ON bi- INTUITIONSTIC TOPOLOGICAL SPACE

Taha H. Jassim ${ }^{1}$, Zenah T. Abdulqader ${ }^{2}$, Hiba O. Mousa ${ }^{2}$
${ }^{1}$ Department of Mathematics, college of computer science and Mathematics, University of Tikrit, Tikrit , Iraq
${ }^{2}$ Department of Mathematics, College of Education for Women, Tikrit University, Tikrit , Iraq

Abstract

: In this paper we introduce a new definition is called bi- intuitionistic topological space and from this concept we present some kinds of closed set (semi -closed, pre-closed , β-closed , α-closed) setes in bi- intuitionistic topological space, define generalized closed set (sg-closed ,gs-closed ,gp-closed, g α-closed, $\alpha \mathrm{g}$ - closed, g β closed) sets in bi - intuitionistic topological space and give relationship among them, we introduce the definition of T_{gs}-space in bi- intuitionistic topological space and from this consept we get new results .

1- Introduction and terminologies :

A triple $\left(\mathrm{X}, \mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{j}}\right)(\mathrm{i} \neq \mathrm{j})$ where $\mathrm{X} \neq \emptyset$ and $\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{j}}$ are topologies on X is called a bi - topological space in 1963 ,Kelly[3] , The concept of fuzzy set introduced for first time in 1965 by Zadeh, 1996 Coker [4] introduced the concept of intuitionistic set and intuitionistic topology as a special case of intuitionistic fuzzy topological spaces. Now we define the bi- intuitionistic topological space if $X \neq \emptyset$, T_{i}, T_{j} are tow intuitionistic topologies on X then (X $, \mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{j}}$) are bi- intuitionistic topological space(bi- ITS for short).
Now we recall the definition of an intuitionistic set and intuitionistic topology and some basic properties which are needed.

(1-1) definition:[5],[6]

Let X be a non-empty set. An intuitionistic set A (IS, for short) is an object having the form $A=\left\langle X, A_{1}, A_{2}\right\rangle$ where A_{1} and A_{2} are subsets of X satisfying $A_{1} \cap$ $A_{2}=\emptyset$. The set A_{1} is called set of members of A, while A_{2} is called set of nonmember of A.

(1-2) definition:[6],[7]

Let A and B be two IS having the form $A=$ $\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ and $\mathrm{B}=\left\langle\mathrm{x}, \mathrm{B}_{1}, \mathrm{~B}_{2}\right\rangle$ respectively, then,
a) $A \subseteq B \Leftrightarrow A_{1} \subseteq B_{1} \& A_{2} \supseteq B_{2}$
b) $A=B \Leftrightarrow A \subseteq B \& B \subseteq A$
c) $\overline{\mathrm{A}}=\left\langle\mathrm{x}, \mathrm{A}_{2}, \mathrm{~A}_{1}\right\rangle$
d) $A \cap B=\left\langle x, A_{1} \cap B_{1}, A_{2} \cup B_{2}\right\rangle$
e) $A \cup B=\left\langle x, A_{1} \cup B_{1}, A_{2} \cap B_{2}\right\rangle$
f) $\widetilde{X}=\langle x, X, \varnothing\rangle$
g) $\widetilde{\emptyset}=\langle x, \emptyset, X\rangle$.
(1-3) definition[4]:
Let X and Y be two non-empty sets and $f: X \rightarrow Y$ be a function.
a) If $B=\left\langle y, B_{1}, B_{2}\right\rangle$ is an IS in Y, then the preimage (inverse image) of B under f is denoted by $\mathrm{f}^{-1}(\mathrm{~B})$ is an IS in X and defined by $\mathrm{f}^{-1}(\mathrm{~B})=$ $\left\langle\mathrm{x}, \mathrm{f}^{-1}\left(\mathrm{~B}_{1}\right), \mathrm{f}^{-1}\left(\mathrm{~B}_{2}\right)\right\rangle$.
b) If $A=\left\langle x, A_{1}, A_{2}\right\rangle$ is an IS in X, then the image of A under f is denoted by $f(A)$ is IS in Y defined by $\mathrm{f}(\mathrm{A})=\left\langle\mathrm{y}, \mathrm{f}\left(\mathrm{A}_{1}\right), \underline{\mathrm{f}}\left(\mathrm{A}_{2}\right)\right\rangle$ where $\underline{\mathrm{f}}(\mathrm{A} 2)=\left(\mathrm{f}\left(\mathrm{A}^{\mathrm{c}} 2\right)^{\mathrm{c}}\right), \mathrm{A}$ any sub set of X.

(1-4) definition:[6]

An intuitionistic topology (IT for short) on a nonempty set X is a family T of IS's in X containing $\widetilde{\emptyset}, \widetilde{\mathrm{X}}$, and closed under finite intersection and arbitrary union. In this case the pair (X, IT) is called an intuitionistic topological spaces ,(ITS for short),
and any IS in T is known as an intuitionistic open set (IOS, for short) in X, the complement of IOS is called intuitionistic closed set (ICS, for short) in X .
(1-5) definition [2],[7]:
Let (X, IT) be ITS , and let $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X . then the intuitionistic interior of ISA (int A ,for short) and intuitionistic closure of ISA (cl A , for short) are defined by
int $\mathrm{A}=\mathrm{U}\{\mathrm{G} \in \mathrm{T}: \mathrm{G} \subseteq \mathrm{A}\}$
$\mathrm{cl} A=\cap\{\mathrm{F}: \mathrm{A} \subseteq \mathrm{F}, \overline{\mathrm{F}} \in \mathrm{T}\}$
(1-6) definition: [1]
a) Let P_{\sim} be an IP in X and $A=\left\langle x, A_{1}, A_{2}\right\rangle$ be an IS in $X . P_{\sim}$ is said to be contained in A (for short $P_{\sim} \in$ A, if $p \in A_{1}$).
b) Let P_{\approx} be VIP in X and $A=\left\langle x, A_{1}, A_{2}\right\rangle$ be an IS in $X . P_{\approx}$ is said to be contained in $A,(P \approx \in A$, for short if, $p \notin \mathrm{~A}_{2}$).
Now we introduce a new definitions which is needed in our work.

(2-1) definition:

We say that ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi- intuitionistic topological space if for each of $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}\right)$ and $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{j}}\right)$ is intuitionistic topological space on X.

(2-2) definition:

Let $\left(X, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}\right)$ bi-ITS and G be a sub set of X then G is said to be $(\mathrm{i}, \mathrm{j})-$ intuitionistic open $\operatorname{set}(\mathrm{i}, \mathrm{j})$ IOS for short) if $G=A \cup B$ where $A \in I T_{i}$ and $B \in I T_{j}$ the complement of (i, j)-open set is (i, j)intuitionistic closed set ((i, j) ICSfor short $)$.
(2-3)Example:
Let $\mathrm{X}=\{1,2,3\}$ and $\mathrm{IT}_{\mathrm{i}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\}$ where
$A=\langle X,\{3\},\{1,2\}\rangle, B=\langle X,\{1\},\{3\}\rangle, C=$
$\langle X,\{1,3\}, \varnothing\rangle$.and
$\mathrm{IT}_{\mathrm{j}}=\{\widetilde{\emptyset}, \widetilde{\mathrm{X}}, \mathrm{D}, \mathrm{E}\} \quad$ where $\quad \mathrm{D}=\langle\mathrm{X},\{1\},\{2\}\rangle, \mathrm{E}=$〈 $\mathrm{X},\{1\},\{2,3\}\rangle$
(i, j)- open set $=\{\widetilde{\varnothing}, \widetilde{X}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$ where $\mathrm{F}=\langle\mathrm{X},\{1,3\},\{2\}\rangle, \mathrm{G}=\langle\mathrm{X},\{1\}, \emptyset\rangle$.
(i, j)- closed set $=\{\widetilde{\varnothing}, \widetilde{X}, \bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E}, \bar{F}, \bar{G}\}$

(2-4) definition

Let $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}\right)$ bi-ITS and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ is IS in X . then the intuitionistic interior and intuitionistic closure of A are denoted by (i, j) int(A) and $(\mathrm{i}, \mathrm{j}) \mathrm{cl}(\mathrm{A})$ respectively and defined as a union of all (i, j)- IOS of X that contained in A and the intersection of all (i, j) -ICS in X that contain A respactively .

(2-5)Remark

Let $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT} \mathrm{T}_{\mathrm{j}}\right)$ bi-ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X. $\quad \operatorname{Then}(\mathrm{i}, \mathrm{j}) \operatorname{cl}(\overline{\mathrm{A}})=(\mathrm{i}, \mathrm{j}) \overline{\operatorname{int}(\mathrm{A})} \&(\mathrm{i}, \mathrm{j}) \operatorname{int}(\overline{\mathrm{A}})=$ (i, j) $\overline{\operatorname{cl}(A)}$.
Now we give the definition of semi, pre ,semi pre (β) , pre semi (α) in bi ITS,s .

(2-6) definitions

Let be ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi- ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X . Then A is called:

1) (i, j) intuitionistic semi-open set ((i, j) ISOS, for short) if $\mathrm{A} \subseteq \mathrm{IT}_{\mathrm{j}} \mathrm{cl}\left(\mathrm{IT}_{\mathrm{i}} \operatorname{int}(\mathrm{A})\right)$
2(i, j)intuitionistic α-ope set (i, j) ($\mathrm{I} \alpha \mathrm{OS}$, for short)if $\mathrm{A} \subseteq \mathrm{IT}_{\mathrm{i}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{j}} \mathrm{cl}\left(\mathrm{IT}_{\mathrm{i}} \operatorname{int}(\mathrm{A})\right)\right)$.
3)(i,j) intuitionistic pre-open set ((i, j) (IPOS, for short) if $\mathrm{A} \subseteq \mathrm{IT}_{\mathrm{i}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{j}} \mathrm{Cl}(\mathrm{A})\right)$
2) (i, j) intuitionistic β-open set $(i, j)(I \beta O S$, for short)if $\mathrm{A} \subseteq \mathrm{IT}_{\mathrm{j}} \mathrm{cl}\left(\mathrm{IT}_{\mathrm{i}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{j}} \mathrm{cl}(\mathrm{A})\right)\right)$.
The complement of (i, j)ISOS (resp. $(\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha \mathrm{OS}$, (i, j)IPOS, and (i, j) I $\beta \mathrm{OS}$) is called (i, j) intuitionistic semi- closed set (resp. (i, j) intuitionistic α-closed, (i, j) intuitionistic pre-closed, , and (i, j) intuitionistic β-closed) set in X. (i, j) ISCS, (i, j) I $\alpha \mathrm{CS}$, (i, j) IPCS, and (i, j) I $\beta \mathrm{CS}$, for short $)$.

(2-7)Theorem :

Let $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT} \mathrm{I}_{\mathrm{j}}\right)$ bi-ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ IS in X . then
i.A is (i, j)ICS then A is(i, j) IaCS , ($\mathrm{i}, \mathrm{j})$ ISCS, (i, j) $\operatorname{IPCS} \operatorname{AND}(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta \mathrm{CS}$.
ii.A is (i, j) I $\alpha \mathrm{OS}$ then A is (i, j)ISOS, ((i, j) IPOS, (i, j) IßOS.)
iii.A is (i, j) ISOS then A is (i, j) I $\beta O S$.
iv.A is (i, j) IPOS then A is $(\mathrm{i}, \mathrm{j}) I \beta O S$.

Proof: [clear from definition]

(2-8)Example:

Let $\mathrm{X}=\{1,2,3\}$ and $\mathrm{IT}_{\mathrm{i}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\}$ where
$A=\langle X,\{3\},\{1,2\}\rangle, B=\langle X,\{1\},\{3\}\rangle, C=$
$\langle\mathrm{X},\{1,3\}, \varnothing\rangle$.and
$\mathrm{IT}_{\mathrm{j}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{D}, \mathrm{E}\} \quad$ where $\quad \mathrm{D}=\langle\mathrm{X},\{1\},\{2\}\rangle, \mathrm{E}=$ $\langle X,\{1\},\{2,3\}\rangle$,
$\operatorname{ISCX}=\left\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{E}, \mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}\right\}$.
IPCX $=\{\widetilde{\emptyset}, \widetilde{\mathrm{X}}, \mathrm{A}$,
E, $\mathrm{K}_{1}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6}, \mathrm{~K}_{7}, \mathrm{~K}_{8}, \mathrm{~K}_{9}, \mathrm{~K}_{10}, \mathrm{~K}_{11}, \mathrm{~K}_{12}, \mathrm{~K}_{13}, \mathrm{~K}_{14}, \mathrm{~K}_{15}$, $\left.\mathrm{K}_{16}, \mathrm{~K}_{17}\right\}$
$\mathrm{I} \alpha \mathrm{CX}=\left\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{E}, \mathrm{K}_{1}, \mathrm{~K}_{3}, \mathrm{~K}_{4}\right\}$
$\mathrm{I} \beta \mathrm{CX}=\left\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right.$
$, \mathrm{K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~K}_{6}, \mathrm{~K}_{7}, \mathrm{~K}_{8}, \mathrm{~K}_{9}, \mathrm{~K}_{10}, \mathrm{~K}_{11}, \mathrm{~K}_{12}, \mathrm{~K}_{13}, \mathrm{~K}_{13}, \mathrm{~K}_{14}, \mathrm{~K}_{15}$
, $\left.\mathrm{K}_{16}, \mathrm{~K}_{17}\right\}$
Where $\quad \mathrm{K}_{1}=\langle\mathrm{X},\{3\},\{1\}\rangle$,
$\mathrm{K}_{2}=\langle\mathrm{X},\{1,2\},\{3\}\rangle, \quad \mathrm{K}_{3}=\langle\mathrm{X}, \emptyset,\{1\}\rangle, \quad \mathrm{K}_{4}=\langle\mathrm{X}, \emptyset,\{1,2\}\rangle$,
$\mathrm{K}_{5}=\langle\mathrm{X}, \emptyset,\{1,3\}\rangle, \quad \mathrm{K}_{6}=\langle\mathrm{X},\{2\},\{1\}\rangle, \quad \mathrm{K}_{7}=\langle\mathrm{X},\{2\},\{3\}\rangle$,
$\mathrm{K}_{8}=\langle\mathrm{X},\{2\},\{1,3\}\rangle$,
$K_{9}=\langle X,\{2\}, \emptyset\rangle, \quad{ }_{0}=\langle X,\{3\},\{2\}\rangle, \quad K_{11}=$
$\langle\mathrm{X},\{3\}, \varnothing\rangle, \quad \mathrm{K}_{12}=\langle\mathrm{X},\{2,3\},\{1\}\rangle \mathrm{K}_{13}=\langle\mathrm{X},\{2,3\}, \varnothing\rangle$,
$\mathrm{K}_{14}=\langle\mathrm{X}, \emptyset,\{2\}\rangle, \quad \mathrm{K}_{15}=\langle\mathrm{X}, \emptyset,\{2\}\rangle, \quad \mathrm{K}_{16}=\langle\mathrm{X}, \emptyset,\{2,3\}\rangle$
$\mathrm{K}_{17}=\langle\mathrm{X}, \emptyset, \emptyset\rangle$
(2-9)Remark

Let $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}\right)$ bi-ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X .then
(i, j)ISOS and (i, j)IPOS is indepented) from example (2-3) $\mathrm{K}_{2}=\langle\mathrm{X},\{1,2\},\{3\}\rangle$ is (i, j)ISOS but not (i, j)IPOS and $\mathrm{K}_{15}=\langle\mathrm{X}, \emptyset,\{2\}\rangle$ is (i, j)IPOS but not (i, j)ISOS .

(2-10) definition

Let $\left(X, I T_{i}, I T_{j}\right)$ bi-ITS, and $A=\left\langle x, A_{1}, A_{2}\right\rangle$ be IS in X . Then the intersection of all (i, j) ISCS (resp ($\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha \mathrm{CS}$, (i, j)IPCS and $(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta C S$) in X that containing A is called the semi-closure (resp. (i, j) α closure , (i, j) pre-closure, and (i, j) β-closure) of A and denoted by (i, j) $\operatorname{scl}(\mathrm{A})(\mathrm{resp} .(\mathrm{i}, \mathrm{j}) \alpha \operatorname{cl}(\mathrm{A}),(\mathrm{i}, \mathrm{j}) \quad \operatorname{pcl}(\mathrm{A}), \operatorname{and}(\mathrm{i}, \mathrm{j}) \quad \beta \mathrm{cl}(\mathrm{A}))$

Note It is well-known that:

$$
\begin{aligned}
& (\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A})=A \cup I T_{\mathrm{j}} \operatorname{int}\left(\operatorname{IT} \mathrm{~T}_{\mathrm{i}} \mathrm{cl}(\mathrm{~A})\right),(\operatorname{resp} .(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{~A}) \\
& =\mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \mathrm{Cl} \mathrm{IT}_{\mathrm{j}} \mathrm{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{Cl}(\mathrm{~A})\right) \text {, } \\
& (\mathrm{i}, \mathrm{j}) \operatorname{pcl}(\mathrm{A})=A \cup \mathrm{IT}_{\mathrm{i}} \mathrm{cl} \mathrm{IT}_{\mathrm{j}} \operatorname{int}(\mathrm{~A}),(\mathrm{i}, \mathrm{j}) \beta \operatorname{cl}(\mathrm{A}) \\
& =A \cup \operatorname{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{Cl} \mathrm{IT}_{\mathrm{j}} \mathrm{int}(\mathrm{~A})\right)
\end{aligned}
$$

(2-11) definition

Let ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) be bi- ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X. Then the union of $\operatorname{all}(i, j)$ ISOS (resp. ($\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha \mathrm{OS},(\mathrm{i}, \mathrm{j}) \mathrm{IPOS}$ and $(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta \mathrm{OS})$ in X that contained A is called the $(\mathrm{i}, \mathrm{j}$) semi-interior (resp. (i, j) α-interior , (i, j) pre-interior and(i, j) β-interior) of A and denoted by $(\mathrm{i}, \mathrm{j}) \operatorname{sint}(\mathrm{A})(\operatorname{resp} .(\mathrm{i}, \mathrm{j}) \alpha \operatorname{int}(\mathrm{A}),(\mathrm{i}, \mathrm{j}) \operatorname{pint}(\mathrm{A}) \operatorname{and}(\mathrm{i}, \mathrm{j}) \operatorname{\beta int}(\mathrm{A}))$

Note It is well-known that

$$
\begin{aligned}
& \overline{(\mathrm{i}, \mathrm{j})} \operatorname{sint}(\mathrm{A})=\mathrm{A} \cap \mathrm{IT}_{\mathrm{j}} \mathrm{cl} \mathrm{IT}_{\mathrm{i}} \operatorname{int}(\mathrm{~A}),(\operatorname{resp} .(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{~A}) \\
& =A \cap \operatorname{IT}_{i} \operatorname{int} \mathrm{IT}_{\mathrm{j}} \mathrm{cl} \mathrm{IT}_{\mathrm{i}} \operatorname{int}(\mathrm{~A}) \text {, } \\
& (\mathrm{i}, \mathrm{j}) \operatorname{pint}(\mathrm{A})=\mathrm{A} \cap \mathrm{IT}_{\mathrm{i}} \operatorname{int} \mathrm{IT}_{\mathrm{j}} \mathrm{cl}(\mathrm{~A}),(\mathrm{i}, \mathrm{j}) \operatorname{sint}(\mathrm{A}) \\
& =\mathrm{A} \cap \mathrm{IT}_{\mathrm{j}} \mathrm{cl} \mathrm{IT}_{\mathrm{i}} \mathrm{intIT}_{\mathrm{j}} \mathrm{cl}(\mathrm{~A}) .
\end{aligned}
$$

(2-13)Proposition

Let $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}\right)$ be bi- ITS, and $\mathrm{A}=\left\langle\mathrm{x}, \mathrm{A}_{1}, \mathrm{~A}_{2}\right\rangle$ be IS in X. Then A is (i, j) I $\alpha O S$ in X if and only if it is both (i, j)ISOS and (i, j) IPOS in X .
Proof: [clear from definition].
3-Generalized closed set in bi- intuitionistic topological spaces
(3-1) definitions
Let ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT} \mathrm{I}_{\mathrm{j}}$) be bi- ITS, an IS $\tilde{\mathrm{A}}$ in X is called:

1) (i, j) Generalized closed (briefly, (i, j) g-closed), if
$\mathrm{IT}_{\mathrm{j}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\mathrm{IT}_{\mathrm{i}}-\mathrm{ISOS}$.
2) (i, j) Semi-generalized closed (briefly, (i, j) sgclosed), if $\mathrm{IT}_{\mathrm{j}^{-}} \operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IT_{i} - ISOS,
3) (i, j) Generalized semi-closed (briefly, (i, j) gsclosed), if $\mathrm{IT}_{\mathrm{j}^{-}} \mathrm{Scl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IT_{i} - IOS,
4) (i, j)Generalized α-closed (briefly, (i, j) $g \alpha-$ closed), if $I T_{j}-\alpha \operatorname{cl}(A) \subseteq U$, whenever $A \subseteq U$ and U is $\mathrm{IT}_{\mathrm{i}} \mathrm{I} \mathrm{I} \alpha \mathrm{OS}$,
5) (i, j) α-generalized closed (briefly, (i, j) $\alpha \mathrm{g}$-closed), if $\mathrm{IT}_{\mathrm{j}}-\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IT_{i} IOS,
6) (i, j)Generalized β-closed (briefly, (i, j) $\quad \mathrm{g} \beta$ closed), if $\mathrm{IT}_{\mathrm{j}}-\beta \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IT_{i} - IOS,
7) (i, j) Generalized pre-closed (briefly, (i, j) gpclosed), if $\mathrm{IT}_{\mathrm{j}^{-}} \operatorname{pcl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is IT_{i}-IOS.

An IS A in X is (i, j) g-open (resp. (i, j) sgopen, (i, j) gs-open, (i, j) g α-open, (i, j) αg-open, (i, j) $g \beta$-open, and (i, j)gp-open), if the $\overline{\mathrm{A}} \mathrm{is}(\mathrm{i}, \mathrm{j}) \mathrm{g}$-closed (resp. (i, j) sg-closed, (i, j) gs-closed, (i, j) g α-closed, (i, j) $\alpha \mathrm{g}$-closed, (i, j) g β-closed and(i, j) gp-closed).

(3-2)Theorem:

Let ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi- ITS. An intuitionistic subset A of X is (i, j)g-open if and only if, for each (i, j)ICS F in X such that $\mathrm{F} \subseteq(\mathrm{i}, \mathrm{j}) \operatorname{int}(\mathrm{A})$ whenever $\mathrm{F} \subseteq \mathrm{A}$

Proof

\Rightarrow Suppose that A is $(\mathrm{i}, \mathrm{j}) \mathrm{g}$-open set in X , and let F be any closed set such that $\mathrm{F} \subseteq \mathrm{A}$, so by definition $\overline{\tilde{A}}$ is
(i, j)g-closed set in X. Therefore, for each(i, j) IOS U say $U=\bar{F}$ in $X \quad, \bar{A} \subseteq \bar{F}$, then $(i, j) \quad \operatorname{cl}(\overline{\mathrm{A}}) \subseteq \overline{\mathrm{F}}$, so $\overline{\bar{F}}=\mathrm{F} \subseteq(\mathrm{i}, \mathrm{j}) \mathrm{cl}(\overline{\mathrm{A}})=(\mathrm{i}, \mathrm{j}) \operatorname{int}(\mathrm{A})$ by Remark (2-5). \Leftarrow suppose that for each(i, j) ICS $\mathrm{F} \subseteq \mathrm{A}$ then $\mathrm{F} \subseteq(\mathrm{i}, \mathrm{j}) \operatorname{int}(\mathrm{A})$, we have to prove that A is $(\mathrm{i}, \mathrm{j}) \mathrm{g}$ open, i.e. we have to prove that \bar{A} is (i, j) g-closed, let U be any IOS in X such that $\bar{A} \subseteq U$, we have to prove that $(\mathrm{i}, \mathrm{j}) \operatorname{cl}(\overline{\mathrm{A}}) \subseteq \mathrm{U}$. For if, since U is ($\mathrm{i}, \mathrm{j})$ IOS, then \bar{U} is (i, j)ICS and $\bar{U} A$, so by hypothesis $\bar{U} \subseteq$ $(\mathrm{i}, \mathrm{j}) \operatorname{int}(\overline{\mathrm{A}})$. Therefore $(\mathrm{i}, \mathrm{j}), \overline{\operatorname{Int}(\mathrm{A})}=(\mathrm{i}, \mathrm{j}) \operatorname{cl}(\overline{\mathrm{A}}) \subseteq$ $\overline{\bar{U}}=U$. By Remark (2-5) we get that $\overline{\mathrm{A}}$ is $(\mathrm{i}, \mathrm{j}) \mathrm{g}-$ closed.

(3-3)Theorem

$\operatorname{Let}\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \quad \mathrm{IT}_{\mathrm{jj}}\right)$ bi- ITS. Then the following implications in the diagram are true but not reversible.

Proof

The method of prove this theorem is to take one implication and prove truth one and give a counter example for the other at the end of the proof.

1) (i, j) Closed $\Rightarrow)(\mathrm{i}, \mathrm{j}) \mathrm{g}$-closed, but the converse is not true.
We have to prove that, if A is (i, j) - closed set then A is (i, j) g-closed. For if, since A is (i, j) - closed, then $(\mathrm{i}, \mathrm{j}) \operatorname{cl}(\mathrm{A})=\mathrm{A}$. Now, for each ($\mathrm{i}, \mathrm{j})-\mathrm{IOS} \mathrm{U}$, $A \subseteq U$. We have $(i, j) \operatorname{cl}(A)=A \subseteq U$.
2) (i, j) IClosed $\Rightarrow(\mathrm{i}, \mathrm{j})$ I α-closed, but the converse is not true.
We have to prove that, if A is (i, j) - closed, then A is (i, j)I α-closed. For if, since A is (i, j) closed, then $\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A})=\mathrm{A}$, so IT_{j} int $\mathrm{IT}_{\mathrm{i}} \mathrm{Cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{Cl}(\mathrm{A})$,
therefore $\quad \mathrm{IT}_{\mathrm{i}} \mathrm{cl} \mathrm{IT} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clA}=\mathrm{A}$. But $\alpha \operatorname{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \operatorname{cl}\left(\mathrm{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A})\right) \subseteq \mathrm{A} \cup\right.$
$\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A})=\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A})=\mathrm{A}, \quad$ Therefore $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq$
A, and we have from definition of $A \subseteq(i, j) \alpha c l(A)$, so we get that $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A})=$ A. i.e. A is $(\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha-$ closed..
3) (i, j)Ig-closed \Rightarrow (i, j)Iag-closed and the converse is not true.
We have to prove that, if a is (i, j) Ig-closed, then A is (i, j) Iag-closed. For if, since A is Ig-closed, so for each $U \in I T_{i}, A \subseteq U$, thenIT $T_{i} c l(A) \subseteq U$. SinceIT T_{i} $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U} \quad, \quad$ then $\quad \mathrm{IT}_{\mathrm{j}} \mathrm{intIT} \mathrm{i}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A} \subseteq \mathrm{U} \quad$, $\operatorname{soIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq$ U , so $\quad(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$. That is, $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$. Therefore A I $\alpha \mathrm{g}$-closed.
4) (i, j) Iag-closed $\Rightarrow(\mathrm{i}, \mathrm{j})$ Igp-closed and the converse is not true
We have to prove that, if A is $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{g}$-closed, then A is (i, j) gp-closed. For if, since A is Iag-closed, so for each $U \in I T_{i}, A \subseteq U$, then $(i, j) \alpha c l(A) \subseteq U$.
$(\mathrm{i}, \mathrm{j}) \alpha \operatorname{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}),(\mathrm{i}, \mathrm{j}) \operatorname{pcl}(\mathrm{A})=$
$A \cup \operatorname{IT}_{i} \operatorname{clIT} T_{j} \operatorname{int}(A) \subseteq A \cup \operatorname{IT}_{i} \operatorname{clIT}_{j} \operatorname{intlT}_{i} \mathrm{cl}(\mathrm{A})=$
(i, j) $\alpha \operatorname{cl}(A)$ Since $\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(A) \subseteq U$, then $\mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq$
$A \subseteq U \quad, \quad \operatorname{solT}_{j} \operatorname{intIT}_{i} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq$ $\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$, so $(\mathrm{i}, \mathrm{j}) \mathrm{pcl}(\mathrm{A}) \subseteq(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$. That is, $(\mathrm{i}, \mathrm{j}) \operatorname{pcl}(A) \subseteq \mathrm{U}$. Therefore $A(\mathrm{i}, \mathrm{j})$ Igp-closed.
$6)(\mathrm{i}, \mathrm{j}) \operatorname{Ig}$-closed $\Rightarrow(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed and the converse is not true.
We have to prove that, if A is $(i, j) I$ gs-closed, then A is $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed. For if, since A is (i, j) Igs-closed, so for each $U \in I T_{i}, A \subseteq U$, then $(i, j) \operatorname{scl}(A) \subseteq U$.
Since $(i, j) \operatorname{scl}(A)=A \cup I_{j} \operatorname{intIT}_{i} \mathrm{cl}(\mathrm{A}) \subseteq U$
, and since $\mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl} \mathrm{IT} \mathrm{T}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{U}$ $(\mathrm{i}, \mathrm{j}) \beta \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$.
Therefore A is $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed.
7)- (i, j) $\mathrm{I} \beta$-closed $\Rightarrow(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed and the converse is not true.
We have to prove that, if A is $(i, j) I \beta$-closed, then A is(i, j) Ig β-closed. For if,
since A is $(i, j) I \beta$-closed, $\mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{clIT} \mathrm{i}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{A}$. Let U be any IOS in IT_{i} such that $\mathrm{A} \subseteq \mathrm{U}$ Since (i, j$) \beta \operatorname{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \operatorname{int}(\mathrm{A})=\mathrm{A} \subseteq$ U.

Therefore $A(i, j) \operatorname{Ig} \beta$-closed.
8) (i, j)Iag-closed $\Rightarrow(\mathrm{i}, \mathrm{j})$ Igs-closed and the converse is not true in general.
We have to prove that, if A is (i, j) I $\alpha \mathrm{g}$-closed, then A is $(\mathrm{i}, \mathrm{j}) \mathrm{I}$ gs-closed. For if,
since A is (i, j) Iag-closed, so for each $U \in I T_{i}, A \subseteq$ U , then $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$.
$(\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{j}} \mathrm{intIT} \mathrm{T}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A} \cup$
$\mathrm{IT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A})=(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$
Since $(\mathrm{i}, \mathrm{j}) \quad \operatorname{scl}(\mathrm{A}) \subseteq(\mathrm{i}, \mathrm{j}) \alpha \operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U} \quad$, That is, $(\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A}) \subseteq \mathrm{U}$.
Therefore, A is (i, j) Igs-closed.
9) (i, j)Igp-closed $\Rightarrow(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed and the converse is not true in general.
We have to prove that, if A is (i, j)Igp-closed, then A is $(i, j) \operatorname{Ig} \beta$-closed. For if,
since A is $\Rightarrow(i, j)$ Igp-closed, so for each $U \in I T_{i}$,$A \subseteq U$, then $(i, j) \operatorname{pcl}(A) \subseteq U$
sine $U \in I T_{i}, \mathrm{IT}_{\mathrm{j}}$ int $\mathrm{A} \subseteq \mathrm{A}$, then
$\beta \operatorname{cl}(A)=A \cup \mathrm{IT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \operatorname{clIT} \mathrm{i}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{A} \cup$
$\mathrm{IT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \mathrm{int}(\mathrm{A}) \subseteq \mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \operatorname{int}(\mathrm{A})=\mathrm{A} \subseteq$
$\mathrm{U}, \mathrm{so}(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$.
That is, A is $(i, j) \operatorname{Ig} \beta$-closed.
$10)(\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha$-Closed $\Rightarrow(\mathrm{i}, \mathrm{j})$ Is-closed, but the converse is not true
Since $\mathrm{IT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A}$,so the result follows
$11(\mathrm{i}, \mathrm{j}) \mathrm{I} \mathrm{p}$-Closed $\Rightarrow(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta$-closed, but the converse is not true
Since $\mathrm{IT}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{clIT} \mathrm{j} \operatorname{intc}(\mathrm{A}) \subseteq \mathrm{A}$, so the result follows.
12)(i,j)I α-closed \Rightarrow ($\mathrm{i}, \mathrm{j})$ Ig α-closed and the converse is not true in general.
We have to prove that, if A is $(\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha$-closed, then A is (i,j)Ig α-closed. For if,
since A is $(i, j) I \alpha$-closed, thenIT $\mathrm{T}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{A}$. Let $A \subseteq U$, where U is any $\mathrm{IT}_{\mathrm{i}} \alpha$-open , Since $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \mathrm{ClIT}_{\mathrm{j}} \mathrm{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A} \subseteq \mathrm{U}$.
Therefore A is($\mathrm{i}, \mathrm{j}) \mathrm{Ig} \alpha$-closed.
13) (i, j) Is-closed $\Rightarrow(\mathrm{i}, \mathrm{j})$ Isg-closed and the converse is not true in general.
We have to prove that, if A is (i, j) Is-closed, then A is (i, j)Isg-closed. For if,
since A is (i, j)Is-closed, then $\mathrm{IT}_{\mathrm{j}} \mathrm{intIT} \mathrm{i}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{A}$. Let $A \subseteq U$, where U is any $I T_{i} s$-open , Since $(\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{j}} \operatorname{intIT} \mathrm{i}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A} \subseteq \mathrm{U}$.
Therefore A is (i, j)Isg-closed.
14) (i, j) $\operatorname{Ig} \alpha$-closed $\Rightarrow(\mathrm{i}, \mathrm{j})$ Ipre-closed and the converse is not true.
We have to prove that, if A is $(\mathrm{i}, \mathrm{j}) \mathrm{Ig} \alpha$-closed, then A is($\mathrm{i}, \mathrm{j})$ Ipre-closed. For if,
since A is ($\mathrm{i}, \mathrm{j}) \operatorname{Ig} \alpha$-closed , then , if for each U is $\mathrm{IT}_{\mathrm{i}} \alpha \mathrm{OS} \quad, \quad A \subseteq U$ then $(i, j) I \alpha c l A \subseteq U$. $(\mathrm{i}, \mathrm{j}) \propto \mathrm{cl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{i}} \mathrm{CIT}_{\mathrm{j}} \operatorname{linhtIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ and since $\mathrm{IT}_{\mathrm{i}} \operatorname{clIT}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{ClIT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U} \quad . \mathrm{IT}_{\mathrm{i}}$ $\operatorname{clIT}_{\mathrm{j}} \operatorname{int}(\mathrm{A}) \subseteq \mathrm{A}$.
Therefore A is (i,j)Ipre-closed
$15)(\mathrm{i}, \mathrm{j})$ Isg-closed $\Rightarrow(\mathrm{i}, \mathrm{j}) I \beta$-closed, and the converse is not true in general
We have to prove that, if A is($i, j)$ Isg-closed, then A is (i, j)I β-closed. For if, since A is (i, j) Isg-closed then , if for each $U \in I T_{i} S O S, A \subseteq U$ then $(i, j) s c l A \subseteq U$. $(\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A})=\mathrm{A} \cup \mathrm{IT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ and since
$\mathrm{IT}_{\mathrm{j}} \operatorname{intIT}_{\mathrm{i}} \mathrm{ClIT}_{\mathrm{j}} \mathrm{int}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{j}} \operatorname{intIT} \mathrm{i}_{\mathrm{i}} \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U} \quad\left(\mathrm{IT}_{\mathrm{j}} \mathrm{int} \mathrm{A} \subseteq\right.$
A) then $\mathrm{IT}_{\mathrm{i}} \mathrm{intIT}_{\mathrm{i}} \mathrm{clIT}_{\mathrm{j}} \mathrm{int}(\mathrm{A}) \subseteq \mathrm{A}$. Therefore A (i,j)I β-closed.
16) (i,j)Ig α-closed \Rightarrow (i,j)I α-closed, and the converse is not true in general.
We have to prove that, if A is $(\mathrm{i}, \mathrm{j}) \mathrm{I} \mathrm{g} \alpha$-closed, then A is $(i, j) I \alpha g$-closed. For if,
since A is ($i, j)$ Ig α-closed, then, if for each $U \in$ $\mathrm{IT}_{\mathrm{i}} \alpha \mathrm{OS}, \quad \mathrm{A} \subseteq \mathrm{U}$ then $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl} \mathrm{A} \subseteq \mathrm{U}$. Since $(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{U}$ for each IOS $\mathrm{G}, \mathrm{A} \subseteq \mathrm{G}(\mathrm{G}$ is($\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha \mathrm{OS}$)
Therefore, $\quad(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{G}, \quad \mathrm{A}(\mathrm{i}, \mathrm{j}) \mathrm{I} \quad \alpha \mathrm{g}-$ closed
17) (i, j)I sg-closed \Rightarrow ($\mathrm{i}, \mathrm{j})$ Igs-closed, an the converse is not true in general.
We have to prove that, if A is (i,j)Isg-closed, then A is (i, j)Igs-closed. For if,
since A is (i,j)Isg-closed, then, if for each UE ISOS $A \subseteq U$ then $(i, j) s c l A \subseteq U$. Since $(i, j) \operatorname{scl}(A) \subseteq$ $\mathrm{IT}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{U}$ for each($\left.\mathrm{i}, \mathrm{j}\right) \mathrm{IOSG} \mathrm{G}, \mathrm{A} \subseteq \mathrm{G}(\mathrm{G}$ is $(\mathrm{i}, \mathrm{j}) \mathrm{ISOS})$ Therefore, $(\mathrm{i}, \mathrm{j}) \operatorname{scl}(\mathrm{A}) \subseteq \mathrm{IT}_{\mathrm{i}} \mathrm{clA} \subseteq \mathrm{G}, \mathrm{A}$ is $(\mathrm{i}, \mathrm{j}) \mathrm{Isg}-$ closed.
The following example shows that;

1) (i, j) I α-closed $\quad \longrightarrow(i, j)$ I g α-closed
2) (i, j)Igp-closed ,(i, j)Ip-closed , (i, j)Igs-closed , $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed and $(\mathrm{i}, \mathrm{j}) I \beta$-closed $\quad \longrightarrow(\mathrm{i}, \mathrm{j}) \mathrm{g} \alpha-$ closed
3) (i, j)I gs-closed , (i, j) I β-closed and ($\mathrm{i}, \mathrm{j}) \quad \operatorname{Ig} \beta$ closed \Rightarrow, (i, j)Isg-closed.
$4),(\mathrm{i}, \mathrm{j})$ Ig-closed $\longrightarrow(\mathrm{i}, \mathrm{j}) \mathrm{I}$ closed

(3-4)Example:

Let $X=\{a, b, c\}$ and $\mathrm{IT}_{\mathrm{i}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}\}$ where
$A=\langle X,\{a\},\{b, c\}\rangle, B=\langle X,\{c\},\{a, b\}\rangle, C=$
$\langle X,\{a, c\},\{b\}\rangle$ and
$\mathrm{IT}_{\mathrm{j}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{D}, \mathrm{E}\} \quad$ where $\quad \mathrm{D}=\langle\mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\}\rangle, \mathrm{E}=$ $\langle\mathrm{X},\{\mathrm{a}, \mathrm{c}\}, \varnothing\rangle$
$\mathrm{I} \alpha \mathrm{O}(\mathrm{X})=\{$
$\widetilde{\emptyset}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}, \mathrm{G}_{5}, \mathrm{G}_{6}, \mathrm{G}_{7}, \mathrm{G}_{8}, \mathrm{G}_{9}, \mathrm{G}_{10}, \mathrm{G}_{11}$, $\left.\mathrm{G}_{12}, \mathrm{G}_{13}\right\} \quad=\mathrm{ISO}(\mathrm{X})$. where $\quad \mathrm{G}_{1}=\{\mathrm{X},\{\mathrm{a}\},\{\mathrm{C}\}\rangle$, $\mathrm{G}_{2}=\langle\mathrm{X},\{\mathrm{a}\}, \emptyset\rangle, \quad \mathrm{G}_{3}=\langle\mathrm{X},\{\mathrm{b}\},\{\mathrm{a}\}\rangle, \quad \mathrm{G}_{4}=\langle\mathrm{X},\{\mathrm{b}\},\{\mathrm{c}\}\rangle$, $\mathrm{G}_{5}=\langle\mathrm{X},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\rangle, \quad \mathrm{G}_{6}=\langle\mathrm{X},\{\mathrm{b}\}, \emptyset\rangle, \quad \mathrm{G}_{7}=\langle\mathrm{X},\{\mathrm{c}\},\{\mathrm{a}\}\rangle$, $\mathrm{G}_{8}=\langle\mathrm{X},\{\mathrm{c}\},\{\mathrm{b}\}\rangle, \mathrm{G}_{9}=\langle\mathrm{X},\{\mathrm{c}\}, \emptyset\rangle, \mathrm{G}_{10}=\langle\mathrm{X},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}\}\rangle$, $\mathrm{G}_{11}=\langle\mathrm{X},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \quad \mathrm{G}_{12}=\langle\mathrm{X},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}\}\rangle$, $\mathrm{G}_{13}=\langle\mathrm{X},\{\mathrm{b}, \mathrm{c}\}, \emptyset\rangle$.

1) Let $L=\langle X,\{b\}, \emptyset\rangle \subseteq U=X$. then L is (i, j)Iagclosed set because
$(\mathrm{i}, \mathrm{j}) \alpha \operatorname{cl}(\mathrm{L})=\mathrm{A} \cup \mathrm{ITi}-\operatorname{cl}(\mathrm{ITj}-\operatorname{int}(\mathrm{ITi}-\operatorname{cl}(\mathrm{L}))$
$=(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{L})=\mathrm{A} \cup \mathrm{ITi}-\operatorname{cl}(\mathrm{ITj}-\operatorname{int}(\mathrm{X}))$
$=\mathrm{L} \cup \mathrm{X}=\mathrm{X} \subseteq \mathrm{U}$.
But is not ($\mathrm{i}, \mathrm{j}) \operatorname{Ig} \alpha$-closed set because the only (i, j) $\mathrm{I} \alpha \mathrm{OX}$ in X containing L is $\mathrm{G}_{11}, \mathrm{G}_{13} \quad$ But $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \alpha-\mathrm{cl}$ $=\mathrm{X} \nsubseteq \mathrm{G}_{11}, \mathrm{G}_{13}$.
2) L is (i, j)Igp-closed ((i, j) Ip-closed , ($i, j)$ Igs-closed ,(i, j)Ig β-closed and ($\mathrm{i}, \mathrm{j}) I \beta$-closed) because :
$(\mathrm{i}, \mathrm{j}) \operatorname{pcl}(\mathrm{L})=\mathrm{L} \subseteq \mathrm{U},(\mathrm{i}, \mathrm{j}) \mathrm{Ip}$-closed $=\mathrm{IT}_{\mathrm{i}}$ с $\quad \mathrm{l}\left(\mathrm{IT}_{\mathrm{j}}{ }^{-}\right.$ $\operatorname{int}(\mathrm{L})) \subseteq \mathrm{L}=\mathrm{IT}_{\mathrm{i}}-\mathrm{Cl}(\emptyset)=\emptyset \subseteq \mathrm{L}$.
, $(\mathrm{i}, \mathrm{j}) \operatorname{gscl}(\mathrm{L})=\mathrm{X} \subseteq \mathrm{U}$ and,$(\mathrm{i}, \mathrm{j}) \mathrm{g} \beta \mathrm{cl}(\mathrm{L})=\mathrm{L} \subseteq \mathrm{U}$. but are not ($\mathrm{i}, \mathrm{j}) \mathrm{g} \alpha$-closed set because by (1).
3)L is (i,j) gs-closed set since ($\mathrm{i}, \mathrm{j}) \operatorname{gscl}(\mathrm{L})=\mathrm{L} U$ ITj int(ITi cl(L))
(i, j) $\operatorname{gscl}(\mathrm{L})=\mathrm{L} \cup \mathrm{X}=\mathrm{X} \subseteq \mathrm{U}$. and L is $(\mathrm{i}, \mathrm{j}) I \beta-$ closed, ,(i, j)Ig β-closed
Because (i, j)I β-closed : ITj int(ITi clITj int $(\mathrm{L})) \subseteq$ L so : ITj int (ITi cl $\emptyset)=\emptyset \subseteq L,(i, j) \operatorname{Ig} \beta \mathrm{cl}(\mathrm{L})=\mathrm{L} \subseteq \mathrm{U}$.But not (i, j) Isg -closed because the only ISOX in X containing L is $\mathrm{G}_{11}, \mathrm{G}_{13}$ But ($\left.\mathrm{i}, \mathrm{j}\right) \operatorname{gscl}(\mathrm{L})=\mathrm{X} \nsubseteq \mathrm{G}_{11}$, G_{13}
3) since $L=\langle X,\{b\}, \emptyset\rangle \subseteq U=X$ then $c l(L)=X \subseteq U$ therefore L is (i, j)Ig-closed set but not closed set $\mathrm{L} \notin \mathrm{IT}_{\mathrm{i}}$-closed set.

The following examples show that;

1) $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \beta$-closed $\longrightarrow(\mathrm{i}, \mathrm{j})$ Isg -closed, (i, j) I gs - closed , and (i, j) Ig α-closed .
2) $(\mathrm{i}, \mathrm{j}) I \beta$-closed $\quad \longrightarrow(\mathrm{i}, \mathrm{j})$ Isg -closed
3) (i, j) Ip -closed $\longrightarrow(\mathrm{i}, \mathrm{j})$ Ig α-closed
4) (i, j) Igp -closed $\longrightarrow(\mathrm{i}, \mathrm{j})$ Ig α-closed

(3-5) Example:

Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{IT}_{\mathrm{i}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{A}, \mathrm{B}\}$ where $\mathrm{A}=\langle\mathrm{X},\{\mathrm{a}, \mathrm{b}\}, \emptyset\rangle, \mathrm{B}\langle\mathrm{X},\{\mathrm{a}\},\{\mathrm{c}\}\rangle$ and $\mathrm{IT}_{\mathrm{j}}=\{\widetilde{\varnothing}, \widetilde{\mathrm{X}}, \mathrm{C}, \mathrm{D}\}$ where $C=\langle X, \emptyset,\{b\}\rangle, D=\langle X,\{a\},\{b\}\rangle$.
Let $H=\langle X, \emptyset,\{c\}\rangle \subseteq U=\langle X,\{a\},\{c\}\rangle$

1) H is $(i, j) \operatorname{Ig} \beta$-closed set because $(i, j) \operatorname{Ig} \beta-c l(H)=H$ \subseteq U.But H is not (i, j)Isg -closed, (i, j) I gs -closed
because (i, j) $\operatorname{I} \operatorname{gscl}(\mathrm{H})=\mathrm{X} \nsubseteq \mathrm{U}$, and not $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \alpha-$ closed because_($\mathrm{i}, \mathrm{j}) \mathrm{I} \operatorname{g\alpha cl}(\mathrm{H})=\mathrm{X} \nsubseteq \mathrm{U}$
2) H is $(\mathrm{i}, \mathrm{j}) I \beta$-closed : $\mathrm{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl} \operatorname{IT}_{\mathrm{j}} \operatorname{int}(\mathrm{H})\right) \subseteq \mathrm{H}$ then
$\mathrm{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\emptyset)\right)=\emptyset \subseteq \mathrm{H}$ since $(\mathrm{i}, \mathrm{j}) \mathrm{I} \operatorname{gacl}(\mathrm{H})=$ $X \nsubseteq U$ then H is not (i, j) Isg -closed.
3) since (i, j) Ip -closed set $\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl} \mathrm{IT} \mathrm{T}_{\mathrm{j}} \mathrm{int}(\mathrm{H})\right) \subseteq \mathrm{H}$ thenIT $\mathrm{i}_{\mathrm{i}} \mathrm{cl} \emptyset=\emptyset \subseteq \mathrm{H}$ so H is (i, j) Ip -closed set but H is not $(\mathrm{i}, \mathrm{j}) \operatorname{Ig} \alpha$-closed because $(\mathrm{i}, \mathrm{j}) \operatorname{I} \operatorname{gacl}(\mathrm{H})=\mathrm{X}$ $\nsubseteq \mathrm{U}$
4) H is $(\mathrm{i}, \mathrm{j}) \operatorname{Igp}-\mathrm{closed}$ because $(\mathrm{i}, \mathrm{j}) \operatorname{Ipcl}(\mathrm{H})=\mathrm{HU}$ $\operatorname{IT}_{\mathrm{i}} \mathrm{Cl}\left(\mathrm{IT}_{\mathrm{j}} \operatorname{int}(\mathrm{H})\right)$
$=\mathrm{HU} \mathrm{IT}_{\mathrm{i}} \mathrm{cl} \emptyset=\mathrm{H} \subseteq \mathrm{U}$ but is not (i, j$)$ Ig α-closed because_(i, j) I $\alpha \mathrm{cl}(\mathrm{H})=\mathrm{X} \nsubseteq \mathrm{U}$

(3-6) Example:

From example (2-3) let $\mathrm{M}=\langle\mathrm{X},\{1\},\{2\}\rangle \subseteq \mathrm{U}=\mathrm{X}$ then

1) M is $(i, j) \operatorname{Igp}-$ closed set because $(i, j) \operatorname{Ipcl}(M)=$ $\mathrm{M} \cup \operatorname{IT}_{\mathrm{i}} \mathrm{Cl}\left(\mathrm{IT}_{\mathrm{j}} \mathrm{int}(\mathrm{M})\right)$
$=\mathrm{M} \cup \mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{D})=\mathrm{M} \cup \mathrm{X}=\mathrm{X} \subseteq \mathrm{U}$, But $\mathrm{M} \notin \mathrm{IPCX}$.
And $(\mathrm{i}, \mathrm{j}) \mathrm{I} \beta \mathrm{cl}(\mathrm{M})=\mathrm{M} \cup \mathrm{IT}_{\mathrm{j}} \mathrm{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl}\left(\mathrm{IT}_{\mathrm{j}} \mathrm{int}(\mathrm{M})\right)=\right.$ $M \cup X=X \subseteq U$ so M is $(i, j) \operatorname{Ig} \beta$-closed set but $M \notin$ I β CX..
2) Let $\mathrm{F}=\langle\mathrm{X},\{1\}, \emptyset\rangle \subseteq \mathrm{U}=\mathrm{X}$ then $(\mathrm{i}, \mathrm{j}) \mathrm{I} \operatorname{Scl}(\mathrm{F})=$ $\mathrm{FU} \mathrm{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{F})\right)=\mathrm{F} \cup \mathrm{X}=\mathrm{X} \subseteq \mathrm{U}$ so F is $(\mathrm{i}, \mathrm{j}) \operatorname{Igs}$ -closed set but $\mathrm{F} \notin \operatorname{ISCX} \mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\operatorname{ITj}$ And $(\mathrm{i}, \mathrm{j}) \mathrm{I}$ $\alpha \operatorname{cl}(\mathrm{F})=\mathrm{F} \cup \mathrm{IT}_{\mathrm{j}} \operatorname{int}\left(\mathrm{IT}_{\mathrm{i}} \mathrm{cl}(\mathrm{F})\right)=\mathrm{F} \cup \mathrm{X}=\mathrm{X}$ so F is (i, j) Ig α-closed But $\mathrm{F} \notin \mathrm{I} \alpha \mathrm{CX}$..
Now we introduce the definition of T_{gs}-space in biITS.

(3-7)definition:

($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi-ITS is said to be Tgs-space, if every (i, j)Igs-closed set in X is (i, j)Isg-closed set in X .

(3-8)proposition:

A subset A of ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi-ITS is (i, j) Ig α - closed if and only if $\mathrm{X}_{1} \cap(\mathrm{i}, \mathrm{j}) \alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{A}$, where
$X_{1}=$
$\left\{P_{\sim}=\left\langle x,\{p\},\{p\}^{c}\right\rangle \widetilde{\in X}: P_{\sim}\right.$ is no where dense in $\left.\widetilde{X}\right\}$
Proof: The same method of proof in ITS see [1]
(3-9)theorem:
For ($\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}$) bi-ITS , the following statements are equivalent.

1. $\left(\mathrm{X}, \mathrm{IT}_{\mathrm{i}}, \mathrm{IT}_{\mathrm{j}}\right)$ is Tgs-space,
2. P_{\sim} is either (i, j)Ipre-open or ($\left.\mathrm{i}, \mathrm{j}\right)$ I closed for each $\mathrm{P}_{\sim} \in \widetilde{\mathrm{X}}$.
3. Every $(\mathrm{i}, \mathrm{j}) \mathrm{I} \alpha \mathrm{g}$-closed in X is $(\mathrm{i}, \mathrm{j}) \mathrm{Ig} \alpha$-closed.
4. Every gp-closed set in X is pre-closed.
5. Every $g \beta$-closed set in X is β-closed in X.
6. Every gp-closed in X is β-closed.

Proof: by similar way on the Tgs space in ITS see [1].
Now we get tow equavilant relation and one new implication in theorem (3-9) .

References

[1].Al-hawez, Z. T. (2008), generalized slightly continuous function between ITS, M.Sc. thesis college of Education Tikrit university.
[2].Andrijeric, D. (1996) "On b-open sets" M. Bechnk. 48 pp. 59-64.
[3].J. C. Kelly, Bitopological spaces, Proc, London Math. Soc., 13 (1963), 71-89.
[4]. Coker, D. (1996) " a note on intuitionistic set and intuitionistic points" Turkish J. of Math. Vol.20, pp. 343-351.
[5].Ozcelik, A. Z. and Narli, S. (2007) " On submaximality in intuitionistic topological space" International J. of Math. And Math. Sci. Vol. 1. No.1. pp. 139-141
[6].Özcač , S. and Coker, D. (2000) " A note on connectedness in intuitionistic fuzzy special topological spaces" International J. of Math. and Math. Sci. Vol. 23. No.1. pp. 45-54.
[7].Jeon, J. K., Baejun Y. and Park, J. H. (2005) " Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy precontinuity" Inter. J. of Math. Sci. 30413101.
[8]..Noiri, T. and Popa, V. (2006) "Slightly mcontinuous multifunction" Bull. Of the institute of mathematic Academia Sinica Vol. 1, No. 4, pp. 484505.

> حول الفضاء ثنائي التبولوجي الحدسي
> طه حميا جاسم 1 ، زينّة طه عبد القادر ² ، هبة عمر موسىى ${ }^{2}$ ،

$$
\begin{aligned}
& \text { 2ق قسم الرياضيات ، كلية التربية للبنات ، جامعة تكريت ، تكريت ، العرق }
\end{aligned}
$$

الملخص
في هذا البحث نقدم تعريفا جديدا يسمى الفضاء ثنائي التبولوجي الحدسي وعن هذا المفهوم نقدم بعض أنواع المجموعات المغلقة (المجموعة شبه
مغلقة، المجموعة قبل المغلة، المجموعة β المغلقة، المجموعة مغلقة ${ }^{\text {a }}$) في الفضاء ثنائي التبولوجي الحسيـي وتعريف المجموعات المغلقة
بينها وكذلك قدمنا تعريف الفضاء Tgs ومن خلال هذا المفهوم توصلنا الى علاقات جديدة.

