Quasi-essentially pseudo – prime modules

Nada Jasim Mohammad Al-obaidy

Department of Mathematics, College of Women Education, Tikrit University, Tikrit, Iraq

Abstract

Let R be a commutative ring with identity and M be a unitary R-module. In this paper we introduce the concept Quasi-essentially pseudo-prime module as a generalization of a prime module and give of examples, characterizations and some basic properties of this concept. Further more we study the relationships of Quasi-essentially pseudo-prime modules with some classes of modules .

1-Introduction

Let R be a commutative ring with identity and M be a unitary R-module. An R-module M is called a prime if $\operatorname{ann}_{R} M=\operatorname{ann}_{R} N$ for every non-zero submodule N of M [8].A proper submodule N of an R-module M is called Quasi-essential submodule in M if $N \cap Q \neq (0)$

for each non-zero quasi-prime submodule Q of M [6] where a proper submodule Q of an R-module M is called a quasi-prime if $r_1r_2m\in Q, m\in M, r_1, r_2\in R$ then

either $r_1 m \in Q$ or $r_2 m \in Q[2]$. And a proper submodule

N of M is called a primary if $r \in R$, $m \in M$ and

 $rm \in N$ then $m \in N$, or $r^n \in [N:M]$ for some $n \in Z_+$,

where $[N:M] = \{r \in R: rM \subseteq N\}$. And M is called

primary module if (0) is a primary submodule of M [7]. In this paper we introduce and study first the concept quasi-essentially pseudo-prime submodule because we needed latter and give characterization and some basic properties of it. In the last section of this paper we introduce and study the concept quasi-essentially pseudo-prime module and give examples , characterizations and some properties of it. On the other hand we study the relation of this concept with prime modules, primary modules and quasi-Dedekind modules .

2- Quasi-essentially pseudo-prime submodules

In this section, we introduce the concept of a Quasiessentially pseudo-prime submodule as a generalization of primary submodule .

Definition (2.1):

A proper submodule N of an R-module M is said to be quasi-essentially pseudo-prime submodule If [N:K] is a primary ideal of R for each a quasi-essential submodule K of M such that $N \subset K$.

Specially an ideal I is a quasi-essentially pseudoprime ideal of R if and only if I is a quasi-essentially pseudo-prime R-submodule of R .

Proposition (2.2):

A proper submodule N of an R-module M is a quasiessentially pseudo-prime submodule of M if and only if $\sqrt{[N:K]} = \sqrt{[N:rK]}$ for $r \in \mathbb{R}$ and for each quasi-essential submodule K of M such that $N \subset K$, $rK \notin N$.

Proof:

It is clear that $\sqrt{[N:K]} \subseteq \sqrt{[N:rK]}$

Now, Let $a_{\in \sqrt{[N:rK]}}$ for each rK $\not\subseteq$ N, where K is a quasi-essential submodule of M.

Hence $a^n r \in [N:K]$ for some $n \subset Z_+$, then $a^n r K \subseteq N$, thus $a^n r \in [N:K]$.

But [N: K] is a primary ideal of R and $r \notin [N:K]$

So, $(a^n)^m \in [N: K]$ for some $m \in Z_+$. Hence a $\in \sqrt{[N:K]}$ there fore $\sqrt{[N:rK]} \subseteq \sqrt{[N:K]}$. Hence $\sqrt{[N:K]} = \sqrt{[N:rK]}$.

Conversely, to prove that [N: K] is a primary ideal of R for each a quasi-essential submodule K of M such that $N \subset K$.

Let $ar \in [N: K]$ and suppose that $r \notin [N: K]$. Then a

 \in [N: K] but [N: K] \subseteq [N: rK] = $\sqrt{[N:K]}$. Thus $a_{\in \sqrt{[N:K]}}$ and hence N is a quasi-essential pseudoprime submodule of M.

Recall that an R-module M is multiplication if every submodule N of M is of the form N=IM for some ideal I of R [3]. The following proposition shows that the concepts of a quasi-essentially pseudo-prime submodule and primary submodules are equivalent in the class of multiplication modules .

Proposition (2.3):

Let M be a multiplication R-module, and N be a proper submodule of M, then the following statement are equivalent:-

1- N is a quasi-essentially pseudo-prime submodule of M .

2- [N: M] is a primary ideal of R.

3- N is a primary submodule of M.

Proof:

(1) \rightarrow (2): by definition (2-1)

(2) \rightarrow (3): Since M is multiplication, then by [4, remark (2-15)], we have [K: M] $\not\subseteq$ [N: M] for each submodule K of M such that N \subset K.

Now, to prove that N is a primary sub-module of M

Let $r \in R$, and $x \in M$ such that $rx \in N$ and suppose that

x∉N. It is clear that the submodule N⊂N+(x) =K and so [K: M] ⊈ [N: M] then there exists s∈[K:M] and s∉[N:M]. Thus sM⊆K, but sM⊈N. But sM⊆K, implies that rsM⊆rK=r(N+(x))⊆N and rs∈[N:M]. since[N:M] is a primary ideal and s∉[N:M], $r^n {\in} [N{:}M]$ for some $n {\in} Z_{\scriptscriptstyle +}$. Therefore N is a primary

submodule of M. (3) \rightarrow (1): trivial

Proposition (2.4):

Let M be an R-module, N is a submodule of M then N is a quasi-essentially pseudo-prime submodule of M if and only if [N:I] is a quasi-essentially pseudo-prime submodule of M for every ideal I of R.

Proof:

To prove that [N:I] is a quasi-essentially pseudoprime submodule of M. We must prove that [[N:I]:K] is a primary ideal of R for each a quasiessentially submodule K of M such that [N:I] \subset K.

Note that N \subseteq [N: I] $\subset K.$ Now , Let a,b $\in R$ such that

 $ab \in [[N:I]:K]$ and suppose that $a \notin [[N:I]:K]$ then

abKI \subseteq N and aKI \notin N. Hence abI \subseteq [N: K]. But [N:K]

is a primary ideal of R and aI \nsubseteq [N:K] then $b^n \in [N:K]$ for some $n \in Z_+$, hence $b^n K \subseteq N \subseteq [N:I]$.

Therefore $b^n \in [[N: I]: K]$

Hence [N: I] is a quasi-essentially pseudo-prime submodule of M.

The converse follows by taking I=R.

We end section by studying the be havior of a quasiessentially pseudo-prime submodules under homomorphic image and inverse image .

Proposition (2.5):

Let M and M be two R-modules and let Ψ : $M \rightarrow M$

be an epimorphism, if N is a quasi-essentially pseudo-prime submodule of M then $\Psi^{-1}(N)$ is a quasi-essentially pseudo-prime submodule of M.

Proof:

To prove $\Psi^{-1}(N)$ is a quasi-essentially submodule of M, we must prove that $[\Psi^{-1}[N]: K]$ is a primary ideal of R, for each a quasi-essential submodule K of M such that $\Psi^{-1}(N) \subset K$. Let $a, b \in R$ such that $ab \in [\Psi^{-1}(N): K]$ and so $abK \subseteq \Psi^{-1}(N)$. Hence $\Psi(abK) \subseteq \Psi$

 $(\Psi^{-1}(N))$. Thus $ab\Psi(K) \subseteq \Psi(\Psi^{-1}(N)) = N$ because Ψ is an epimorphism. Thus $ab \in [N:\Psi(K)]$. Since K is a

quasi-essential in M, then by [6, prop.(2.3) (1)] $\Psi(K)$ is a quasi-essential in M. But $\Psi^{-1}(N) \subset K$, so $N=\Psi$ ($\Psi^{-1}(N) \subset \Psi(K)$ and hence [N: $\Psi(K)$] is a primary ideal

. Hence either a $\ \in \ [N{:}\Psi(K)]$ or $b^n \in \ [N{:}\Psi(K)]$ for

some $n \in \mathbb{Z}_+$. And so either $a\Psi(K) \subseteq N$ or $b^n\Psi(K) \subseteq$

N Therefore, either Ψ (aK) \subseteq N or $\Psi(b^nK) \subseteq$ N.

That is either $aK \subseteq \Psi^{-1}(N)$ or $b^nK \subseteq \Psi^{-1}(N)$. Thus a \in

 $[\Psi^{-1}(N): K]$ or $b^n \in [\Psi^{-1}(N): K]$.

Therefore $[\Psi^{-1}(N): K]$ is a primary ideal for each a quasi-essential submodule K of M such that $\Psi^{-1}(N) \subset K$. Hence $\Psi^{-1}(N)$ is a quasi-essentially pseudo-prime submodule of M.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Proposition(2.6):

Let M, M be two R-modules, and let Ψ : M \rightarrow M be an

epimorphism. If N is a quasi-essentially pseudoprime submodule of M such that $\text{Ker}\Psi \subseteq N$, then $\Psi(N)$ is a quasi-essentially pseudo-prime submodule of M['].

Proof:

To prove that $\Psi(N)$ is a quasi-essentially pseudoprime submodule of M , we must prove that $[\Psi(N): K]$ is a primary ideal of R for each a quasi-essentially submodule K of M such that $\Psi(N) \subset K$.

Since Ψ is an epimorphism, then $K = \Psi (\Psi^{-1}(K))$. Let $K = \Psi^{-1}(K)$ which is a quasi-essential submodule of M by [6, prop.(2.3)(2)].Thus $\Psi (K) = K$ It follows that $\Psi (N) \subset \Psi (K)$.

To prove that $[\Psi(N) = \Psi(K)]$ is a primary ideal of R. Let a, b \in R such that $ab \in [\Psi(N) = \Psi(K)]$, so $ab \Psi(K)$

 $\subseteq \Psi(N)$. Hence for each $x \in K$, $ab\Psi(x) \subseteq \Psi(N)$, so that

 $\Psi(abx)=\Psi(n)$ for some $n \in \mathbb{N}$, implies that abx-

n∈KerΨ⊆N, and so abx∈N for each x∈K.Hence ab∈[N:K]. But [N: K] is a primary ideal of R, because N is a quasi-essentially pseudo-prime submodule of M. so either a ∈[N: K] or $b^n∈[N: K]$

for some $n \in \mathbb{Z}_+$ Thus either $aK \subseteq N$ or $b^n K \subseteq N$ and

so either $a\Psi(K) \subseteq \Psi(N)$ or $b^n\Psi(K) \subseteq \Psi(N)$.

Therefore, either $a \in [\Psi(N):\Psi(K)]$ or

 $b^{n} \in [\Psi(N):\Psi(K)]$. Thus $[\Psi(N):\Psi(K)]$ is a primary

ideal of R and $\Psi(N)$ is a quasi-essentially pseudo-prime submodule of $M^{'}.$

3-Quasi-essentially pseudo-prime modules

In this section, we introduce the definition of quasiessentially pseudo-prime module as a generalization of prime module .

Definition (3.1):

An R-module M is said to be a quasi-essentially pseudo-prime module if ann_RN is a primary ideal of R for each non-zero a quasi-essential submodule N of M.

Specially a ring R is called a quasi-essentially pseudo-prime ring if and only if R is a quasi-essentially pseudo-prime R-module .

Remarks And Examples (3.2):

1- Every prime R-module is quasi-essentially pseudoprime R-module, but the converse is not true, as the following example shows:

The Z-module Z_4 is a quasi-essentially pseudoprime Z-module because Z_4 is a quasi-essential in Z_4 and <2> is a quasi-essential in Z4, and ann_z Z_4 =4Z is primary ideal of Z, and ann_z(2) =2Z is a prime ideal, hence it is a primary ideal of Z, but Z_4 is not prime because ann_z Z_4 =4ann_z(N) for each non-zero submodule N of Z_4 .

2 - Z as Z-module is quasi-essentially pseudo-prime Z-module .

3 – The homomorphic image of a quasi-essentially pseudo-prime R-module is not a quasi-essentially pseudo-prime module, as the following example shows:

 $\frac{Z}{6Z} \cong Z_6$ is not a quasi-essentially pseudo-prime Z-

module .

The following result gives a characterization for quasi-essentially pseudo-prime modules.

Preposition (3.3):

Let M be R-module. Then M is a quasi-essentially pseudo-prime module if and only if (0) is a quasi-essentially pseudo-prime submodule of M.

Proof:

Suppose that (0) is quasi-essentially pseudo-prime submodule of M, to prove that M is a quasi-essentially pseudo-prime module. Since (0) is a quasi-essentially pseudo-prime submodule, then [(0): K] is a primary ideal of R, for each a quasi-essential submodule of M, such that (0) \subseteq K. But [(0):K] = ann_RK, hence M is a quasi-essentially pseudo-prime module.

Conversely, suppose that M is a quasi-essentially pseudo-prime module , to prove that (0) is a quasi-essentially pseudo-prime submodule of M. Since M is a quasi-essentially pseudo-prime module , then ann_R K =[(0):K] is a primary ideal of R for each a quasi-essential submodule K of M. Hence (0) is a quasi-essentially pseudo-prime submodule of M.

The following corollaries are direct consequence of proposition (3.3).

Corollary (3.4):

Let N be a proper submodule of an R-module M, then N is a quasi-essentially pseudo-prime submodule ,if and only if, $\frac{M}{N}$ is a quasi-essentially pseudo-prime

module .

Corollary (3.5):

An R-module M is a quasi-essentially pseudo-prime module if and only if $ann_M I$ is a quasi-essentially pseudo-prime submodule of M, for each ideal I of R. Corollary (3.6):

Let M be an R-module. Then M is a quasi-essentially pseudo-prime module, if and only if, $\sqrt{ann}RK =$

 $\sqrt{ann} \operatorname{Rr} K$, for each a quasi-essential submodule K of

M such that $rK \neq (0)$, $r \in \mathbb{R}$.

Proof :

By proposition (3.3) and proposition (2.2).

Recall that an R-module M is uniform if every nonzero submodule of M is an essential in M [4]. Since every essential submodule is a quasi-essential [6] then we have the following result.

Proposition (3.7):

Let M be a finitely generated uniform R-module. Then M is a primary module if and only if M is a quasi-essentially pseudo-prime module.

Proof:

The if part, direct.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Conversely, suppose that M is a quasi-essentially pseudo-prime R-module. To prove that M is a primary module, we must prove that (0) is a primary submodule of M. Let rx=0 for $r\in R$ and $x\in M$ and $x \neq 0$. Since M is uniform then every submodule of M is a quasi-essential in M. That is $(x) \cap (y) \neq (0)$ for any $y \in M$, $y \neq 0$ and so there exists a non-zero elements $a,b \in \mathbb{R}$ such that $ax = by \neq 0$. But rx=0, so rax=0. It follows that rax=rby=0, and so $r \in ann_R$ (by). Hence $r \in \sqrt{ann}R(by) = \sqrt{ann}R(y)$. On the other hand, since M is finitely generated module, then M = some $x_{1,x_{2,\ldots,x_{n}} \in M}$. for But $\sum_{i=1}^{n} Rxi$ $ann_{R} = \bigcap_{i=1}^{n} ann_{R}(xi)$ so $\sqrt{ann_{R}}M = \sqrt{\bigcap_{i=1}^{n} ann_{R}}(xi) =$ $\bigcap \sqrt{ann} R(xi)$. But $r \in \bigcap_{i=1}^{n} \sqrt{ann} R(xi)$ so $r \in \sqrt{ann} RM$.

Thus (0) is a primary submodule of M . Hence M is a primary module .

In the following proposition, we show that the to concepts prime module and a quasi-essentially pseudo-prime module are equivalent:

Proposition (3.8):

If M is a uniform R-module, with ann_RN is semiprime ideal of R for each non-zero submodule N of M then M is a prime, if and only if, M is a quasiessentially pseudo-prime module.

Proof:

The If part is direct.

Conversely, To prove that M is a prime module. We must prove (0) is a prime submodule of M. Let rx=0for $r\in R$, $x\in M$, $x\neq 0$. Since M is a uniform every submodule of M is essential , hence every submodule of M is a quasi-essential in M. Thus $(x)\cap(y)\neq(0)$ for any $y\in M$, $y\neq 0$ and so there exists a non-zero elements a,b $\in R$ such that $ax=ay\neq 0$. But rx=0, so rax=0. Thus, rax=rby=0 and so $r\in ann_R$ (by). Hence by corollary (3.6) $r\in \sqrt{ann_R}$ (by)= $\sqrt{ann_R}(y)$. Since ann_RN is a semi-prime ideal of R, so $r\in ann_R(y)$. Hence r(y)=0 for any $y\in M$. Thus $r\in ann_RM$. That is (0) is a prime submodule. Therefore M is a prime module. Recall that an R-module M is a quasi-Dedekind if

How $\left(\frac{M}{N}, M\right) = (0)$ for each non-zero submodule N of

M [7] .

Proposition (3.9):

Let M be a uniform R-module and ann_RN is a semiprime ideal of R for each non-zero submodule N of M then the following statements are equivalents:

1 – M is a quasi-essentially pseudo-prime module .

2 – M is a prime module.

3 - M is a quasi-Dedekind module .

Proof:

Tikrit Journal of Pure Science 21 (6) 2016

(1) \rightarrow (2): by proposition (3.8).

(2) \rightarrow (3): by [5, theo.(3.11)].

(3) \rightarrow (1) by [5, theo.(1.7)] and remarks and examples (3.2)(1).

We end this section by the following results:

References

[1] Abdul - Rahmaan, A. A. << on submodules of multiplication modules >> M.Sc., thesis, Baghdad univ.1992 .

[2] Adbul - Razak, H. M. << Quasi-prime modules and Quasi-prime submodules>>, M.Sc., thesis, Baghdad univ.1999.

[3] Barrard. A. << Multiplication Modules>> J. Algebra, 71 (1981), 174-178.

[4] Goodearl, K. R. << Ring theory >> Macel Dekker, NewYork, 1976.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

Proposition (3.10):

If M is a multiplication a quasi-essentially pseudo-Prime R-module then M is a finitely generated module.

Proof :

Since M is a quasi-essentially pseudo-prime module, then ann_RM is a primary ideal of R .

Then by [1, prop.(2.7)] M is finitely generated module .

[5] Mijbass, A.S. << Qausi-Dedekind Modules and Quasi-invertible submodules >>, Ph.D. thesis. Baghdad Unvi.1997.

[6] Mohammed Ali, H. K. << Quasi-essential submodules >> Al-Fath Journal, No.27, (2007), 70-85.

[7] Smith, P.F.<<Primary modules ever commutative Rings >>, Glasgow Math. J, 43 (2001), 103-111.

[8] Say Mach S.A. <<On prime submodules>> University Nac. Tucumans ser.29 (1979), 121-136.

المقاسات الاولية الكاذبة جوهريأ ظاهريأ

ندى جاسم محمد العبيدي

قسم الرياضيات ، كلية التربية للبنات ، جامعة تكريت ، تكريت ، العراق

الملخص

لتكن R حلقة ابدالية بمحايد و M مقاساً احادياً على R . في هذا البحث قدمنا مفهوم المقاس الاولي الكاذب جوهرياً ظاهرياً كأعمام للمقاس الاولي واعطينا العديد من الامثلة والتشخيصات و بعض الخواص الاساسية لهذا المفهوم. اضافة لهذا درسنا العلاقة بين المقاسات الاولية الكاذبة جوهرياً ظاهرياً مع بعض اصناف اخرى من المقاسات .