Quasi-essentially pseudo - prime modules

Nada Jasim Mohammad Al-obaidy
Department of Mathematics, College of Women Education, Tikrit University, Tikrit , Iraq

Abstract

Let R be a commutative ring with identity and M be a unitary R -module. In this paper we introduce the concept Quasi-essentially pseudo-prime module as a generalization of a prime module and give of examples, characterizations and some basic properties of this concept. Further more we study the relationships of Quasiessentially pseudo-prime modules with some classes of modules .

1-Introduction

Let R be a commutative ring with identity and M be a unitary R-module. An R-module M is called a prime if $\operatorname{ann}_{R} \mathrm{M}=\mathrm{ann}_{\mathrm{R}} \mathrm{N}$ for every non-zero submodule N of M [8].A proper submodule N of an R -module M is called Quasi-essential submodule in M if $\mathrm{N} \cap \mathrm{Q} \neq(0)$
for each non-zero quasi-prime submodule Q of M [6] where a proper submodule Q of an R -module M is called a quasi-prime if $r_{1} r_{2} m \in Q, m \in M, r_{1}, r_{2} \in R$ then either $r_{1} m \in Q$ or $r_{2} m \in Q[2]$. And a proper submodule N of M is called a primary if $r \in R, m \in M$ and $r m \in N$ then $m \in N$, or $r^{n} \in[N: M]$ for some $n \in Z_{+}$, where $[\mathrm{N}: \mathrm{M}]=\{\mathrm{r} \in \mathrm{R}: \mathrm{rM} \subseteq \mathrm{N}\}$. And M is called primary module if (0) is a primary submodule of M [7]. In this paper we introduce and study first the concept quasi-essentially pseudo-prime submodule because we needed latter and give characterization and some basic properties of it. In the last section of this paper we introduce and study the concept quasiessentially pseudo-prime module and give examples, characterizations and some properties of it. On the other hand we study the relation of this concept with prime modules, primary modules and quasi-Dedekind modules .

2- Quasi-essentially pseudo-prime submodules

In this section, we introduce the concept of a Quasiessentially pseudo-prime submodule as a generalization of primary submodule .

Definition (2.1):

A proper submodule N of an R -module M is said to be quasi-essentially pseudo-prime submodule If $[\mathrm{N}: \mathrm{K}]$ is a primary ideal of R for each a quasiessential submodule K of M such that $N \subset K$.
Specially an ideal I is a quasi-essentially pseudoprime ideal of R if and only if I is a quasi-essentially pseudo-prime R-submodule of R.

Proposition (2.2):

A proper submodule N of an R -module M is a quasiessentially pseudo-prime submodule of M if and only if $\sqrt{[N: K]}=\sqrt{[N: r K]}$ for $r \in \mathrm{R}$ and for each quasi-essential submodule K of M such that $\mathrm{N} \subset \mathrm{K}$, $\mathrm{rK} \ddagger \mathrm{N}$.

Proof:

It is clear that $\sqrt{[N: K]} \subseteq \sqrt{[N: r K]}$

Now, Let $\mathrm{a}_{\in \sqrt{[N: r K]}}$ for each $\mathrm{rK} \nsubseteq \mathrm{N}$, where K is a quasi-essential submodule of M.
Hence $a^{n} r \in[N: K]$ for some $n \subset Z_{+}$, then $a^{n} r K \subseteq N$, thus $a^{n} r \in[N: K]$.
But $[\mathrm{N}: \mathrm{K}]$ is a primary ideal of R and $\mathrm{r} \notin[\mathrm{N}: \mathrm{K}]$
So, $\left(a^{n}\right)^{m} \in[N: K]$ for some $m \in Z_{+}$. Hence a $\in \sqrt{[N: K]}$ there fore $\sqrt{[N: r K]} \subseteq \sqrt{[N: K]}$. Hence $\sqrt{[N: K]}=\sqrt{[N: r K]}$.
Conversely, to prove that $[\mathrm{N}: \mathrm{K}]$ is a primary ideal of R for each a quasi-essential submodule K of M such that $\mathrm{N} \subset \mathrm{K}$.
Let $\operatorname{ar} \in[\mathrm{N}: \mathrm{K}]$ and suppose that $\mathrm{r} \notin[\mathrm{N}: \mathrm{K}]$. Then a $\in[\mathrm{N}: \mathrm{K}]$ but $[\mathrm{N}: \mathrm{K}] \subseteq[\mathrm{N}: \mathrm{rK}]=\sqrt{[\mathrm{N:K]}}$. Thus $\mathrm{a}_{\in \sqrt{[N: K]}}$ and hence N is a quasi-essential pseudoprime submodule of M .
Recall that an R-module M is multiplication if every submodule N of M is of the form $\mathrm{N}=\mathrm{IM}$ for some ideal I of R [3]. The following proposition shows that the concepts of a quasi-essentially pseudo-prime submodule and primary submodules are equivalent in the class of multiplication modules .
Proposition (2.3):
Let M be a multiplication R -module, and N be a proper submodule of M , then the following statement are equivalent:-
1- N is a quasi-essentially pseudo-prime submodule of M.
2- [$\mathrm{N}: \mathrm{M}$] is a primary ideal of R .
3- N is a primary submodule of M .

Proof:

$(1) \rightarrow(2)$: by definition (2-1)
(2) $\rightarrow(3)$: Since M is multiplication, then by [4, remark (2-15)], we have $[\mathrm{K}: \mathrm{M}] \nsubseteq[\mathrm{N}: \mathrm{M}]$ for each submodule K of M such that $\mathrm{N} \subset \mathrm{K}$.
Now, to prove that N is a primary sub-module of M
Let $r \in R$, and $x \in M$ such that $r x \in N$ and suppose that $x \notin N$. It is clear that the submodule $N \subset N+(x)=K$ and so $[\mathrm{K}: \mathrm{M}] \nsubseteq[\mathrm{N}: \mathrm{M}]$ then there exists $\mathrm{s} \in[\mathrm{K}: \mathrm{M}]$ and $\mathrm{s} \notin[\mathrm{N}: \mathrm{M}]$. Thus $\mathrm{s} M \subseteq \mathrm{~K}$, but $\mathrm{s} M \nsubseteq \mathrm{~N}$. But $\mathrm{sM} \subseteq \mathrm{K}$, implies that $\mathrm{rsM} \subseteq \mathrm{rK}=\mathrm{r}(\mathrm{N}+(\mathrm{x})) \subseteq \mathrm{N}$ and $\mathrm{rs} \in[\mathrm{N}: \mathrm{M}]$. since $[\mathrm{N}: \mathrm{M}]$ is a primary ideal and $\mathrm{s} \notin[\mathrm{N}: \mathrm{M}]$,
$r^{\mathrm{n}} \in[\mathrm{N}: \mathrm{M}]$ for some $\mathrm{n} \in \mathrm{Z}_{+}$. Therefore N is a primary submodule of M .
(3) \rightarrow (1): trivial

Proposition (2.4):

Let M be an R -module, N is a submodule of M then N is a quasi-essentially pseudo-prime submodule of M if and only if [$\mathrm{N}: \mathrm{I}$] is a quasi-essentially pseudoprime submodule of M for every ideal I of R .

Proof:

To prove that $[\mathrm{N}: \mathrm{I}]$ is a quasi-essentially pseudoprime submodule of M . We must prove that [$[\mathrm{N}: \mathrm{I}]: \mathrm{K}]$ is a primary ideal of R for each a quasiessentially submodule K of M such that $[N: I] \subset K$.
Note that $\mathrm{N} \subseteq[\mathrm{N}: \mathrm{I}] \subset \mathrm{K}$. Now, Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ such that $a b \in[[N: I]: K]$ and suppose that $a \notin[[N: I]: K]$ then abKI $\subseteq \mathrm{N}$ and $\mathrm{aKI} \nsubseteq \mathrm{N}$. Hence $\mathrm{abI} \subseteq[\mathrm{N}: \mathrm{K}]$. But $[\mathrm{N}: K]$ is a primary ideal of R and $\mathrm{aI} \nsubseteq[\mathrm{N}: \mathrm{K}]$ then $b^{n} \in[N: K]$ for some $n \in Z_{+}$, hence $b^{n} K \subseteq N \subseteq[N: I]$.
Therefore $b^{n} \in[[N: I]: K]$
Hence [N: I] is a quasi-essentially pseudo-prime submodule of M.
The converse follows by taking $\mathrm{I}=\mathrm{R}$.
We end section by studying the be havior of a quasiessentially pseudo-prime submodules under homomorphic image and inverse image .

Proposition (2.5):

Let M and M be two R-modules and let $\Psi: \mathrm{M} \rightarrow \mathrm{M}$ be an epimorphism, if N is a quasi-essentially pseudo-prime submodule of M^{\prime} then $\Psi^{-1}(\mathrm{~N})$ is a quasi-essentially pseudo-prime submodule of M.

Proof:

To prove $\Psi^{-1}(\mathrm{~N})$ is a quasi-essentially submodule of M , we must prove that $\left[\Psi^{-1}[\mathrm{~N}]: \mathrm{K}\right]$ is a primary ideal of R, for each a quasi-essential submodule K of M such that $\Psi^{-1}(N) \subset K$. Let $a, b \in R$ such that ab $\in\left[\Psi^{-}\right.$
$\left.{ }^{1}(\mathrm{~N}): \mathrm{K}\right]$ and so $\mathrm{abK} \subseteq \Psi^{-1}(\mathrm{~N})$. Hence $\Psi(\mathrm{abK}) \subseteq \Psi$ $\left(\Psi^{-1}(\mathrm{~N})\right)$. Thus $\mathrm{ab} \Psi(\mathrm{K}) \subseteq \Psi\left(\Psi^{-1}(\mathrm{~N})\right)=\mathrm{N}$ because Ψ is an epimorphism.Thus $a b \in[N: \Psi(K)]$. Since K is a
quasi-essential in M, then by [6, prop.(2.3) (1)] $\Psi(\mathrm{K})$ is a quasi-essential in M^{\prime}. But $\Psi^{-1}(\mathrm{~N}) \subset \mathrm{K}$, so $\mathrm{N}=\Psi\left(\Psi^{-}\right.$ $\left.{ }^{1}(\mathrm{~N})\right) \subset \Psi(\mathrm{K})$ and hence $[\mathrm{N}: \Psi(\mathrm{K})]$ is a primary ideal . Hence either a $\in[N: \Psi(K)]$ or $b^{n} \in[N: \Psi(K)]$ for some $n \in Z_{+}$. And so either $a \Psi(K) \subseteq N$ or $b^{n} \Psi(K) \subseteq$ N Therefore, either $\Psi(\mathrm{aK}) \subseteq \mathrm{N}$ or $\Psi\left(\mathrm{b}^{\mathrm{n}} \mathrm{K}\right) \subseteq \mathrm{N}$. That is either $\mathrm{a} K \subseteq \Psi^{-1}(\mathrm{~N})$ or $\mathrm{b}^{\mathrm{n}} \mathrm{K} \subseteq \Psi^{-1}(\mathrm{~N})$. Thus a \in $\left[\Psi^{-1}(\mathrm{~N}): K\right]$ or $\mathrm{b}^{\mathrm{n}} \in\left[\Psi^{-1}(\mathrm{~N}): K\right]$.
Therefore [$\left.\Psi^{-1}(\mathrm{~N}): \mathrm{K}\right]$ is a primary ideal for each a quasi-essential submodule K of M such that $\Psi^{-1}(\mathrm{~N})$ $\subset \mathrm{K}$. Hence $\Psi^{-1}(\mathrm{~N})$ is a quasi-essentially pseudoprime submodule of M .

Proposition(2.6):

Let M, M be two R-modules, and let $\Psi: \mathrm{M} \rightarrow \mathrm{M}$ be an epimorphism. If N is a quasi-essentially pseudoprime submodule of M such that $\operatorname{Ker} \Psi \subseteq \mathrm{N}$, then $\Psi(\mathrm{N})$ is a quasi-essentially pseudo-prime submodule of M .

Proof:

To prove that $\Psi(\mathrm{N})$ is a quasi-essentially pseudoprime submodule of M , we must prove that [$\Psi(\mathrm{N})$: K^{\prime}] is a primary ideal of R for each a quasi-essentially submodule K^{\prime} of M^{\prime} such that $\Psi(N) \subset K^{\prime}$.
Since Ψ is an epimorphism, then $K^{\prime}=\Psi\left(\Psi^{-1}\left(K^{\prime}\right)\right)$. Let $\mathrm{K}^{-}=\Psi^{-1}\left(\mathrm{~K}^{\prime}\right)$ which is a quasi-essential submodule of M by [6, prop.(2.3)(2)].Thus $\Psi(\mathrm{K})=\mathrm{K}^{\prime}$ It follows that $\Psi(\mathrm{N}) \subset \Psi(\mathrm{K})$.
To prove that $[\Psi(\mathrm{N})=\Psi(\mathrm{K})]$ is a primary ideal of R . Let $a, b \in R$ such that $a b \in[\Psi(N)=\Psi(K)]$, so $a b \Psi(K)$ $\subseteq \Psi(\mathrm{N})$. Hence for each $\mathrm{x} \in \mathrm{K}, \mathrm{ab} \Psi(\mathrm{x}) \subseteq \Psi(\mathrm{N})$, so that $\Psi(a b x)=\Psi(n)$ for some $n \in N$, implies that abx$\mathrm{n} \in \operatorname{Ker} \Psi \subseteq \mathrm{N}$, and so $\mathrm{abx} \in \mathrm{N}$ for each $\mathrm{x} \in \mathrm{K}$.Hence $a b \in[N: K]$. But $[N: K]$ is a primary ideal of R, because N is a quasi-essentially pseudo-prime submodule of M. so either $a \in[N: K]$ or $b^{n} \in[N: K]$ for some $\mathrm{n} \in \mathrm{Z}_{+}$Thus either $\mathrm{aK} \subseteq \mathrm{N}$ or $\mathrm{b}^{\mathrm{n}} \mathrm{K} \subseteq \mathrm{N}$ and so either $\mathrm{a} \Psi(\mathrm{K}) \subseteq \Psi(\mathrm{N})$ or $\mathrm{b}^{\mathrm{n}} \Psi(\mathrm{K}) \subseteq \Psi(\mathrm{N})$.
Therefore, either $a \in[\Psi(N): \Psi(\mathrm{K})] \quad$ or
$\mathrm{b}^{\mathrm{n}} \in[\Psi(\mathrm{N}): \Psi(\mathrm{K})]$. Thus $[\Psi(\mathrm{N}): \Psi(\mathrm{K})]$ is a primary ideal of R and $\Psi(\mathrm{N})$ is a quasi-essentially pseudoprime submodule of M^{\prime}.

3-Quasi-essentially pseudo-prime modules

In this section, we introduce the definition of quasiessentially pseudo-prime module as a generalization of prime module .

Definition (3.1):

An R-module M is said to be a quasi-essentially pseudo-prime module if $\operatorname{ann}_{\mathrm{R}} \mathrm{N}$ is a primary ideal of R for each non-zero a quasi-essential submodule N of M.

Specially a ring R is called a quasi-essentially pseudo-prime ring if and only if R is a quasiessentially pseudo-prime R-module .

Remarks And Examples (3.2):

1- Every prime R-module is quasi-essentially pseudoprime R -module, but the converse is not true, as the following example shows:
The Z -module Z_{4} is a quasi-essentially pseudoprime Z -module because Z_{4} is a quasi-essential in Z_{4} and $\left\langle 2>\right.$ is a quasi-essential in Z 4 , and ann $_{z} \mathrm{Z}_{4}=4 \mathrm{Z}$ is primary ideal of Z, and $\operatorname{ann}_{z}(2)=2 Z$ is a prime ideal, hence it is a primary ideal of Z , but Z_{4} is not prime because $\operatorname{ann}_{z} \mathrm{Z}_{4} \neq \mathrm{ann}_{\mathrm{Z}}(\mathrm{N})$ for each non-zero submodule N of Z_{4}.
$2-\mathrm{Z}$ as Z -module is quasi-essentially pseudo-prime Z-module.

3 - The homomorphic image of a quasi-essentially pseudo-prime R -module is not a quasi-essentially pseudo-prime module, as the following example shows:
$\frac{Z}{6 Z} \cong \mathrm{Z}_{6}$ is not a quasi-essentially pseudo-prime Zmodule .
The following result gives a characterization for quasi-essentially pseudo-prime modules.

Preposition (3.3):

Let M be R -module. Then M is a quasi-essentially pseudo-prime module if and only if (0) is a quasiessentially pseudo-prime submodule of M.

Proof:

Suppose that (0) is quasi-essentially pseudo-prime submodule of M , to prove that M is a quasiessentially pseudo-prime module. Since (0) is a quasiessentially pseudo-prime submodule, then $[(0): \mathrm{K}]$ is a primary ideal of R, for each a quasi-essential submodule of M , such that $(0) \subseteq \mathrm{K}$. But $[(0): \mathrm{K}]=$ $\operatorname{ann}_{\mathrm{R}} \mathrm{K}$, hence M is a quasi-essentially pseudo-prime module .
Conversely, suppose that M is a quasi-essentially pseudo-prime module, to prove that (0) is a quasiessentially pseudo-prime submodule of M. Since M is a quasi-essentially pseudo-prime module, then $\operatorname{ann}_{\mathrm{R}} \mathrm{K}=[(0): \mathrm{K}]$ is a primary ideal of R for each a quasi-essential submodule K of M . Hence (0) is a quasi-essentially pseudo-prime submodule of M .
The following corollaries are direct consequence of proposition (3.3).

Corollary (3.4):

Let N be a proper submodule of an R -module M , then N is a quasi-essentially pseudo-prime submodule ,if and only if, $\frac{M}{N}$ is a quasi-essentially pseudo-prime module.

Corollary (3.5):

An R-module M is a quasi-essentially pseudo-prime module if and only if $\operatorname{ann}_{\mathrm{M}} \mathrm{I}$ is a quasi-essentially pseudo-prime submodule of M , for each ideal I of R .

Corollary (3.6):

Let M be an R -module. Then M is a quasi-essentially pseudo-prime module, if and only if, $\sqrt{a n n}{ }^{\mathrm{R}} \mathrm{K}=$ $\sqrt{a n n}{ }_{\mathrm{R}} \mathrm{rK}$, for each a quasi-essential submodule K of M such that $r K \neq(0), r \in R$.

Proof:

By proposition (3.3) and proposition (2.2).
Recall that an R-module M is uniform if every nonzero submodule of M is an essential in M [4]. Since every essential submodule is a quasi-essential [6] then we have the following result.

Proposition (3.7):

Let M be a finitely generated uniform R-module. Then M is a primary module if and only if M is a quasi-essentially pseudo-prime module.

Proof:

The if part, direct.

Conversely, suppose that M is a quasi-essentially pseudo-prime R-module. To prove that M is a primary module, we must prove that (0) is a primary submodule of M. Let $r x=0$ for $r \in R$ and $x \in M$ and $x \neq 0$. Since M is uniform then every submodule of M is a quasi-essential in M. That is (x) $\cap(y) \neq(0)$ for any $\mathrm{y} \in \mathrm{M}, \mathrm{y} \neq 0$ and so there exists a non-zero elements $a, b \in R$ such that $a x=$ by $\neq 0$. But $r x=0$, so $r a x=0$. It follows that rax $=r b y=0$, and so $r \in a n n_{R}$ (by). Hence $\mathrm{r}_{\in \sqrt{a n n^{R}}(b y)=\sqrt{a n n}{ }^{R}(y) \text {.On the other }}$ hand, since M is finitely generated module, then $\mathrm{M}=$ $\sum_{i=1}^{n} R x i$ for some $\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn} \in \mathrm{M}$. But $\mathrm{ann}_{\mathrm{R}}=\bigcap_{i=1}^{n} a n n_{\mathrm{R}}(\mathrm{xi})$ so $\sqrt{a n n}{ }_{\mathrm{R}} \mathrm{M}=\sqrt{\cap_{i=1}^{n} a n n^{2}} \mathrm{R}(\mathrm{xi})=$ $\cap \sqrt{a n n} \mathrm{R}(\mathrm{xi})$. But $\mathrm{r} \in_{\bigcap_{i=1}^{n} \sqrt{a n n} \mathrm{R}}$ (xi) so $\mathrm{r}_{\in \sqrt{a n n} \mathrm{R}} \mathrm{M}$. Thus (0) is a primary submodule of M. Hence M is a primary module.
In the following proposition, we show that the to concepts prime module and a quasi-essentially pseudo-prime module are equivalent:

Proposition (3.8):

If M is a uniform R -module, with $\operatorname{ann}_{\mathrm{R}} \mathrm{N}$ is semiprime ideal of R for each non-zero submodule N of M then M is a prime, if and only if, M is a quasiessentially pseudo-prime module.

Proof:

The If part is direct .
Conversely, To prove that M is a prime module. We must prove (0) is a prime submodule of M . Let $\mathrm{rx}=0$ for $r \in R, x \in M, x \neq 0$. Since M is a uniform every submodule of M is essential , hence every submodule of M is a quasi-essential in M. Thus $(x) \cap(y) \neq(0)$ for any $y \in M, y \neq 0$ and so there exists a non-zero elements $a, b \in R$ such that $a x=a y \neq 0$. But $r x=0$, so $r a x=0$. Thus, $r a x=r b y=0$ and so $r \in a n n_{R}$ (by). Hence by corollary (3.6) $\mathrm{r}_{\in} \sqrt{a n n} \mathrm{R}$ (by) $=\sqrt{a n n} \mathrm{R}$ (y). Since $\operatorname{ann}_{R} N$ is a semi-prime ideal of R, so $r \in a n n_{R}(y)$. Hence $r(y)=0$ for any $y \in M$. Thus $r \in a n_{R} M$. That is (0) is a prime submodule. Therefore M is a prime module.
Recall that an R-module M is a quasi-Dedekind if Hom $\left(\frac{M}{N}, M\right)=(0)$ for each non-zero submodule N of M [7] .

Proposition (3.9):

Let M be a uniform R -module and $\mathrm{ann}_{\mathrm{R}} \mathrm{N}$ is a semiprime ideal of R for each non-zero submodule N of M then the following statements are equivalents:
$1-\mathrm{M}$ is a quasi-essentially pseudo-prime module .
$2-\mathrm{M}$ is a prime module .
$3-\mathrm{M}$ is a quasi-Dedekind module .
Proof:
$(1) \rightarrow(2)$: by proposition (3.8)
(2) \rightarrow (3): by [5, theo. (3.11)].
(3) \rightarrow (1) by [5, theo.(1.7)] and remarks and examples (3.2)(1) .

We end this section by the following results:

References

[1] Abdul - Rahmaan, A. A. \ll on submodules of multiplication modules >> M.Sc., thesis, Baghdad univ. 1992 .
[2] Adbul - Razak, H. M. << Quasi-prime modules and Quasi-prime submodules>>, M.Sc., thesis, Baghdad univ. 1999.
[3] Barrard. A. << Multiplication Modules>> J. Algebra, 71 (1981), 174-178.
[4] Goodearl, K. R. << Ring theory >> Macel Dekker, NewYork, 1976.

Proposition (3.10):

If M is a multiplication a quasi-essentially pseudoPrime R-module then M is a finitely generated module.

Proof:

Since M is a quasi-essentially pseudo-prime module, then $\operatorname{ann}_{R} M$ is a primary ideal of R.
Then by [1, prop.(2.7)] M is finitely generated module .
[5] Mijbass, A.S. << Qausi-Dedekind Modules and Quasi-invertible submodules >>, Ph.D. thesis. Baghdad Unvi. 1997 .
[6] Mohammed Ali, H. K. << Quasi-essential submodules >> Al-Fath Journal, No.27, (2007), 7085.
[7] Smith, P.F.<<Primary modules ever commutative Rings >>, Glasgow Math. J, 43 (2001), 103-111.
[8] Say Mach S.A. <<On prime submodules>> University Nac. Tucumans ser. 29 (1979), 121-136.

$$
\begin{aligned}
& \text { المقاسات الاولية الكاذبة جوهرياً ظاهرياً } \\
& \text { ندى جاسم محمد العبياي } \\
& \text { قسم الرياضيات ، كلية التنربية للبنات ، جامعة تكربت ، تكريت ، العرلق }
\end{aligned}
$$

لتكن R حلقة ابدالية بمحايد و M مقاساً احادياً على R . في هذا البحث قدمنا مفهوم المقاس الاولي الكاذب جوهرياً ظاهرياً كأعمام للمقاس الاولي واعطينا العديد من الامثلة والتتخيصات و بعض الخواص الاساسية لهذا اللفهوم. اضافة لهذا درسنا العلاقة بين المقاسات الاولية الكاذبة جوهرياً ظاهرياً مع بعض اصناف اخرى من المقاسات .

