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Abstract

In this paper we generalize the Fuglede-Putnam theorem to non-normal operators to posinormal operator and
co-posinormal operators. Also we prove this theorem to supra class posinormal operators (called
supraposinormal operator) and co-supra class posinormal operators (called cosupraposinormal operator).
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Introduction

In this paper we give positive answer to the question
that appeared in [1].

Let H be a separable complex Hilbert space and
B(H), S;, and S, denote the algebra of all bounded
linear operators acting on H, the Hilbert-Schmidt
class and the trace class in B(H) respectively. It is
well known that S, is itself a Hilbert space with the
inner product

<x,y>= Z < xe,ye; >=Tr(Y"X)

=Tr(XY")
where e; is any orthonormal basis of H and Tr(.) is
the natural trace on S,(H) [2]. The Hilbert-Schmidt
norm of X € S, is given by ||X]|, =< X, X >/2.
Berberian [3] relaxes the hypothesis on A and B by
assuming A and B*
hyponormal operators and X to be Hilbert-Schmidt
class. An operator T € B(H) is normal if TT* = T*T,
positive, T = 0, if <T,x>=0 for all x € H,
posinormal if there exists a positive operator P €
B(H) such that TT* = T*PT. Here, P is called an
interrupter of T, and co-posinormal if T* s
posinormal i.e T*T = TPT*. From [4, Theorem 2.1],
we know that T is posinormal if and only if c>T*T —
TT* =0 for some c > 0. Letpbe 0<p<1. An
operator T € B(H) is said to be p-hyponormal if
(TT*)P < (T*T)P,
and p-posinormal if (TT*)P < ¢?(T*T)?, for some ¢
> 0. It is clear that 1-hyponormal and 1-posinormal
are hyponormal and posinormal, respectively.
Definition 1. For a positive integer k and a positive
number 0 <p <1, an operator T is said to be (p,
k)-quasiposinormal if
(TH*(c?(T*T)? — (TT*)P)T* = 0
for some ¢ > 0 [5].
The Main Results
The Posinormal Operator Case
The basic elementary operator M, 5 induced by the
operators A and B is defined on S;(H) by M, z(X) =
AXB, and the adjoint of M, is given by the formula
M;5(X) = A*XB* [3].
The familiar Fuglede-Putnam Theorem is as follows
[6, Theorem 6.7] and [7, Theorem 12.16]):
Theorem 1. If A and B are normal operators and if X
is an operator such that AX = XB, then A*X = XB*.
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Proposition 1. Let AB € B(H). IfA>=0and B = 0,
then M, 5 = 0.
Proof: Let X € S;(H),
< M, pX,X > = Tr(AXBX*)

= Tr(AY/2XBX*A'/?2)

- Tr((Al/ZXBl/Z)( Bl/2x* Al/Z))

= Tr((AY?XBY/2)( AY2XB'/2)*) > 0.
Indeed, M%7 (X) = A'/2X BY/2,
Proposition 2. If A and B* € B(H), A is a (p,q)-
quasiposinormal operator and B* is a posinormal
operators then M, 5 is a positive operator.
Proof : Let X € Sy(H), since B* is posinormal
operator, then there exists a positive number ¢ such
that c2A*A— AA* =0, and we must show that
c2M; gMyp — My gM;; 5 > 0 Indeed, the formula
c2Mj pMy p — My p M 5 =C° A*AXBB* - AA*XB*B
¢® A*AXBB* - AA*XB*B +C°AA*XBB* -
C’AA*XBB
=c’(A*A — AA*)XBB* + AA*X(c’BB* - B*B)
shows that c*M; ;M,p — My My 5 is the sum of
two positive operators. Hence M, p is posinormal.
Lemma 1. If A is an invertible posinormal operator,
then A~ is posinormal operator.
Proof : Since A is posinormal, then for some ¢ > 0
we have

C2A*A—AA* >0
CZA*A = AA*
ATH(c2A*A) (AN = ATTAAT (A
ATN(CPA A (AL =1
Taking inverses gives
A* (lA—l(A*)—1>A <]
c? -
1
C_ZA 1(A*) 1S(A*) 1A 1
CZ(A*)—lA—l > A—l(A*)—l
This means that A~ is posinormal.
The following theorem with proof can be found in [5,

Theorem 2.5]
Theorem 2. Let T be a (p, g)-quasiposinormal

operator. Then
_h T
r=o 7]

on H = ran(T%) + ker(T**), where T, is p-
posinormal operator and T
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Lemma 2. Let T be a (p, q)-quasiposinormal
operator on a Hilbert space H. If 1€ C,x € H and
Tx = A x, then T*x = Ax.
Proof : If x = 0 then the proof is obvious. If x # 0,
let H, be a span of {x}. Then H, is an invariant
subspace of T and
I, T,
T=1o T3]
onH=H, + Hg.
Let Q be the orthogonal projection of H onto H,.
Then T; =TQ and T} = QT*, so
T, =1 and
(Ti TP = (QT*TQluy)P = (QT*TQ)P |,
2 Q(T*T)PQly,
by Hansen’s inequality [7]. On the other hand
(I TP = (TQT )P = (TQT")P |4,
< QT)PQly,
by Lowner-Heinz’s inequality [9, 10]. Hence

[(F007 0] = earryre = earmyre
[(TlTl)p 0]
- 0
Hence
) AP A
TT*YP = [| ] _
(TT") 1 B
Let
SE_ XY
(TT7)2 = [Y* z] :
Then
X 0 N N
5 ol = eurHze = ereryze
-1
0 0
Hence
X = |AP.
Since
YT [X Y
NP —
e
_[X*+yy" Xy +vz
Y*X+ZY* Y'Y + 72
We have
X2+YY* = |2
And

AP =JX2+YY* =X > AP

Hence Y=0. Hence

~2 AP 0 . [1a? o

(TT)Z—[O Z]and TT—[0 Zg.
On the other hand we have

- [T H 0]_ [|/1|2+T2T2* T2T3*]

0 T, Ty~ T5T, T,T;
Hence T, = 0. Thus
T"X = [ ] = AX.
0 T;l0

The first generalization of Fuglede-Putnam Theorem
is as follows:

Theorem 3. If A € B(H) is (p, k)-quasiposinormal
operator and B € B(H) is invertible and co-
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posinormal operator such that AX = XB, for some X
€ Sy, then A*X = XB*.

Proof: Let AX = BX for some X € Sy, then

Myp-1(X) = AXB™1
= XBB™!
= X.

Since B is invertible and co-posinormal operator, that
is B* is invertible and posinorml operator, so (B*)™!

is posinormal by Lemma 1. Also M,p-1 is
posinormal operator by Proposition 2. Hence
M, ;-1 = X by Lemma 2, and so

A*X(B) ' =X
that is

A*X = X B".

The Supraposinormal Operator Case
Definition 2. (1)An operator T € B(H) is said to be
supraposinormal if there exist two positive operators
U&V € B(H) such that
TVT* =T*UT,
where at least one of the U and V has dense range in
H. It will sometimes be convenient to refer to the
ordered pair (U, V) as an interrupter pair associated
with T.
(2)For a positive integer k and a positive number 0 <
p < 1, An operator T is said to be (p, k)-
quasisupraposinormal if
(TH*((TVT*P = (T*UT)P)T*.
The following theorem with proof can be found in
[11, Theorem 4.6.7]
Theorem 4. If A is an invertible positive operator,
then its inverse A~ is positive.
Proposition 3. If T is an invertible supraposinormal
with invertible interrupter (U, V), then it’s inverse
T~ is also supraposinormal.
Proof: Since T is supraposinormal
TV T*=T*UT
(THTVT*T™' = (T 'T*UTT !
(THTVT*T 1 =U

Take inverses
T(r)~tv-ir-it* =yt
(TH Wittt = Ty YTt
by Theorem4 U~! and V™1 are positive,so T™1 is
a supraposinormal.
Proposition 4. If A € B(H) is (p, k)-
quasisupraposinormal operator and B* € B(H) is a
supraposinormal  operators then M,z is
supraposinormal operator.
Proof : Since A and B are supraposinormal
My V M;z = AVA’XB*VB
A"UAXBUB*
=Myp UM,p.
Theorem 5. Let T be a (p, g)-quasisupraposinormal
operator. Then
r=[s 7]

Oon H =ran(T¥) + ker(T**) , where T, is p-
supraposinormal operator and TX = 0.
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Proof: Consider the decomposition H =
ran(T*) + ker(T**), since ran(T¥) s an
invariant subspace of T, T has the matrix
representation

_h T
T=1o Tl]

with respect to H = ran(T¥) + ker(T**) Let Q
be the orthogonal projection on ran(T*) . Then T; =
TQ and T* = QT*, because of
(TH®(TVT*? = (T*UT)PT¥,
Lowner-Heinz’s inequality [9, 10], and Hansen’s
inequality we have
(TLVTY)P = (TQVQT")P < Q(TVT*)PQ
=Q(T"UT)PQ < (QT"UTQ)?
= (T;UT)P ... (D
(T{UT,)P = (QT*UTQ)? < Q(T"UT)PQ
=Q(TVT")PQ < (TQVQT")?

= (TLVTHP. ... (2)
From (1) and (2) we see that T1 is p-supraposinormal
on ran(T¥).
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