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Abstract 
 In this paper we generalize the Fuglede-Putnam theorem to non-normal operators to posinormal operator and 

co-posinormal operators. Also we prove this theorem to supra class posinormal operators (called 

supraposinormal operator) and co-supra class posinormal operators (called cosupraposinormal operator). 

Keywords: Fuglede-Putnam Theorem, posinormal operator, positive operator. 

Introduction 
In this paper we give positive answer to the question 

that appeared in [1]. 

Let H be a separable complex Hilbert space and 

B(H), S1, and S2 denote the algebra of all bounded 

linear operators acting on H, the Hilbert-Schmidt 

class and the trace class in B(H) respectively. It is 

well known that S1 is itself a Hilbert space with the 

inner product 

< 𝑥, 𝑦 > =  ∑ < 𝑥𝑒𝑖 , 𝑦𝑒𝑖 > = 𝑇𝑟(𝑌∗𝑋)

= 𝑇𝑟(𝑋𝑌∗) 

where 𝑒𝑖 is any orthonormal basis of H and Tr(.) is 

the natural trace on 𝑆2(H) [2]. The Hilbert-Schmidt 

norm of X ∈ S1 is given by  ||𝑋||2 =< 𝑋, 𝑋 >1 2⁄ . 

Berberian [3] relaxes the hypothesis on A and B by 

assuming A and B∗ 

hyponormal operators and X to be Hilbert-Schmidt 

class. An operator T ∈ B(H) is normal if TT* = T*T, 

positive, T ≥ 0, if < 𝑇𝑥, 𝑥 > ≥ 0 for all x ∈ H, 

posinormal if there exists a positive operator P ∈ 

B(H) such that TT* = T*PT.  Here, P is called an 

interrupter of T, and co-posinormal if T* is 

posinormal i.e T*T = TPT*. From [4, Theorem 2.1], 

we know that T is posinormal if and only if 𝑐2𝑇∗𝑇 −
𝑇𝑇∗ ≥ 0 for some c > 0. Let p be 0 < 𝑝 ≤ 1. An 

operator T ∈ B(H) is said to be p-hyponormal if  

(𝑇𝑇∗)𝑝 ≤ (𝑇∗𝑇)𝑝, 

and p-posinormal if  (𝑇𝑇∗)𝑝 ≤ 𝑐2(𝑇∗𝑇)𝑝, for some c 

> 0. It is clear that 1-hyponormal and 1-posinormal 

are hyponormal and posinormal, respectively. 

Definition 1. For a positive integer k and a positive 

number  0 < 𝑝 ≤ 1, an operator T is said to be (p, 

k)-quasiposinormal if 

(𝑇∗)𝑘(𝑐2(𝑇∗𝑇)𝑝 − (𝑇𝑇∗)𝑝)𝑇𝑘 ≥ 0 
for some c > 0 [5]. 

The Main Results 
The Posinormal Operator Case 

The basic elementary operator 𝑀𝐴,𝐵 induced by the 

operators A and B is defined on S1(H) by 𝑀𝐴,𝐵(X) = 

AXB, and the adjoint of 𝑀𝐴,𝐵 is given by the formula 

𝑀𝐴,𝐵
∗ (𝑋) = 𝐴∗𝑋𝐵∗  [3]. 

The familiar Fuglede-Putnam Theorem is as follows 

[6, Theorem 6.7] and [7, Theorem 12.16]): 

Theorem 1. If A and B are normal operators and if X 

is an operator such that AX = XB, then A*X = XB*. 

Proposition 1. Let A,B ∈ B(H). If A ≥ 0 and B ≥ 0, 

then 𝑀𝐴,𝐵 ≥ 0. 

Proof:  Let X ∈ S1(H), 

< 𝑀𝐴,𝐵X,X > = Tr(AXBX*)  

                      = Tr(𝐴1 2⁄ XBX*𝐴1 2⁄ ) 

                      = Tr((𝐴1 2⁄ X𝐵1 2⁄ )( 𝐵1 2⁄ X* 𝐴1 2⁄ )) 

                      = Tr((𝐴1 2⁄ X𝐵1 2⁄ )( 𝐴1 2⁄ X𝐵1 2⁄ )*) > 0. 

Indeed, 𝑀𝐴,𝐵
1 2⁄

(𝑋)  = 𝐴1 2⁄ X 𝐵1 2⁄ . 

Proposition 2. If A and B* ∈ B(H), A is a (p,q)-

quasiposinormal operator and B* is a  posinormal 

operators then 𝑀𝐴,𝐵 is a positive operator. 

Proof :  Let X ∈ S1(H), since B* is posinormal 

operator, then there exists a positive number c  such 

that 𝑐2𝐴∗𝐴 − 𝐴𝐴∗ ≥ 0, and we must show that   

𝑐2𝑀𝐴,𝐵
∗ 𝑀𝐴,𝐵 − 𝑀𝐴,𝐵𝑀𝐴,𝐵

∗ ≥ 0 Indeed, the formula 

𝑐2𝑀𝐴,𝐵
∗ 𝑀𝐴,𝐵 − 𝑀𝐴,𝐵𝑀𝐴,𝐵

∗   =c
2
 A*AXBB* - AA*XB*B 

  = c
2
 A*AXBB* - AA*XB*B +c

2
AA*XBB* - 

c
2
AA*XBB 

 =c
2
(A*A – AA*)XBB* + AA*X(c

2
BB* - B*B) 

shows that  𝑐2𝑀𝐴,𝐵
∗ 𝑀𝐴,𝐵 − 𝑀𝐴,𝐵𝑀𝐴,𝐵

∗   is the sum of 

two positive operators. Hence  𝑀𝐴,𝐵  is posinormal. 

Lemma 1. If A is an invertible posinormal operator, 

then 𝐴−1 is posinormal operator. 

Proof :  Since A is posinormal, then for some c > 0 

we have 

𝑐2𝐴∗𝐴 − 𝐴𝐴∗ ≥ 0 

𝑐2𝐴∗𝐴 ≥ 𝐴𝐴∗ 

𝐴−1(𝑐2𝐴∗𝐴)(𝐴∗)−1 ≥ 𝐴−1𝐴𝐴∗(𝐴∗)−1 

𝐴−1(𝑐2𝐴∗𝐴)(𝐴∗)−1 ≥ 𝐼 
Taking inverses gives 

𝐴∗ (
1

𝑐2
𝐴−1(𝐴∗)−1) 𝐴 ≤ 𝐼 

1

𝑐2
𝐴−1(𝐴∗)−1 ≤ (𝐴∗)−1𝐴−1 

𝑐2(𝐴∗)−1𝐴−1  ≥ 𝐴−1(𝐴∗)−1 
This means that 𝐴−1 is posinormal. 

The following theorem with proof can be found in [5, 

Theorem 2.5] 

Theorem 2. Let T be a (p, q)-quasiposinormal 

operator. Then 

𝑇 =  [
𝑇1 𝑇2

0 𝑇3
] 

on H = 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + ker(𝑇∗𝑘), where 𝑇1 is p-

posinormal operator and 𝑇3
𝑘 = 0. 
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Lemma 2. Let T be a (p, q)-quasiposinormal 

operator on a Hilbert space H. If   𝜆 ∈ ℂ, 𝑥 ∈ 𝐻  and  

𝑇𝑥 = 𝜆 𝑥, then T*x = 𝜆x. 

Proof :  If x = 0 then the proof is obvious. If  x ≠ 0, 

let 𝐻0 be a span of {x}. Then 𝐻0 is an invariant 

subspace of T and 

𝑇 =  [
𝑇1 𝑇2

0 𝑇3
] 

on H = 𝐻0 + 𝐻0
⫠. 

Let Q be the orthogonal projection of H onto 𝐻0. 

Then 𝑇1 = TQ and 𝑇1
∗ = QT*, so 

𝑇1 = 𝜆  and 

(𝑇1
∗𝑇1)𝑝 = (𝑄𝑇∗𝑇𝑄|𝐻0

)𝑝 = (𝑄𝑇∗𝑇𝑄)𝑝|𝐻0

≥ 𝑄(𝑇∗𝑇)𝑝𝑄|𝐻0
 

by Hansen’s inequality [7]. On the other hand 

(𝑇1𝑇1
∗)𝑝 = (𝑇𝑄𝑇∗|𝐻0

)𝑝 = (𝑇𝑄𝑇∗)𝑝|𝐻0

≤ 𝑄(𝑇𝑇∗)𝑝𝑄|𝐻0
 

by Lowner-Heinz’s inequality [9, 10]. Hence 

[
(𝑇1

∗𝑇1)𝑝 0
0 0

] ≥ 𝑄(𝑇𝑇∗)𝑝𝑄 ≥ 𝑄(𝑇∗𝑇)𝑝𝑄 

≥  [
(𝑇1𝑇1

∗)𝑝 0
0 0

] 

Hence 

(𝑇𝑇∗)𝑝 =  [|𝜆|2𝑝 𝐴
𝐴 𝐵

]  . 

Let 

(𝑇𝑇∗)
𝑝
2 = [

𝑋 𝑌
𝑌∗ 𝑍

]  . 

Then 

[
𝑋 0
0 0

] = 𝑄(𝑇𝑇∗)
𝑝
2𝑄 ≥  𝑄(𝑇𝑄𝑇∗)

𝑝
2𝑄

= [
|𝜆|𝑝 0

0 0
]    . 

Hence 

𝑋 ≥   |𝜆|𝑝 . 
Since 

(𝑇𝑇∗)𝑝 =   [
𝑋 𝑌
𝑌∗ 𝑍

]  [
𝑋 𝑌
𝑌∗ 𝑍

]

= [ 𝑋2 + 𝑌𝑌∗ 𝑋𝑌 + 𝑌𝑍
𝑌∗𝑋 + 𝑍𝑌∗ 𝑌∗𝑌 + 𝑍2] 

We have 

𝑋2 + 𝑌𝑌∗ =  |𝜆|2𝑝 
And 

|𝜆|𝑝 = √𝑋2 + 𝑌𝑌∗   ≥ 𝑋 ≥ |𝜆|𝑝. 
 

Hence Y=0. Hence 

(𝑇𝑇∗)
𝑝
2 = [

|𝜆|𝑝 0
0 𝑍

] 𝑎𝑛𝑑   𝑇𝑇∗ = [
|𝜆|2 0

0 𝑍
𝑝
2

]  . 

On the other hand we have 

  𝑇𝑇∗ =  [
𝑇1 𝑇2

0 𝑇3
] [

𝑇1
∗ 0

𝑇2
∗ 𝑇3

∗] = [
|𝜆|2 + 𝑇2𝑇2

∗ 𝑇2𝑇3
∗

𝑇3𝑇2
∗ 𝑇3𝑇3

∗] 

Hence  𝑇2 = 0. Thus 

𝑇∗𝑋 =  [𝜆 0
0 𝑇3

]
𝑥
0

=  𝜆̅𝑋. 

The first generalization of  Fuglede-Putnam Theorem 

is as follows: 

Theorem 3. If A ∈ B(H) is (p, k)-quasiposinormal 

operator and B ∈ B(H) is invertible and co-

posinormal operator such that AX = XB, for some X 

∈ S1, then A*X = XB*. 

Proof:  Let AX = BX for some X ∈ S1, then 

𝑀𝐴,𝐵−1(𝑋) =  𝐴𝑋𝐵−1 

= 𝑋𝐵𝐵−1 

= 𝑋. 
Since B is invertible and co-posinormal operator, that 

is B* is invertible and posinorml operator, so (𝐵∗)−1 

is posinormal by Lemma 1. Also 𝑀𝐴,𝐵−1 is 

posinormal operator by Proposition 2. Hence 

𝑀𝐴,𝐵−1
∗ = 𝑋  by Lemma 2, and so 

𝐴∗𝑋(𝐵∗)−1 = 𝑋 

that is 

𝐴∗𝑋 = 𝑋 𝐵∗. 
The Supraposinormal Operator Case 

Definition 2. (1)An operator T ∈ B(H) is said to be 

supraposinormal if there exist two positive operators 

U&V  ∈ B(H) such that 

𝑇𝑉𝑇∗ = 𝑇∗𝑈𝑇, 
where at least one of the U and V has dense range in 

H. It will sometimes be convenient to refer to the 

ordered pair (U, V ) as an interrupter pair associated 

with T. 

(2)For a positive integer k and a positive number 0 < 

p ≤ 1, An operator T is said to be (p, k)-

quasisupraposinormal if 

(𝑇∗)𝑘((𝑇𝑉𝑇∗)𝑝 = (𝑇∗𝑈𝑇)𝑝)𝑇𝑘. 
The following theorem with proof can be found in 

[11, Theorem 4.6.7] 

Theorem 4. If A is an invertible positive operator, 

then its inverse 𝐴−1 is positive. 

Proposition 3. If T is an invertible supraposinormal 

with invertible interrupter (U, V ), then it’s inverse 

𝑇−1 is also supraposinormal. 

Proof:  Since T is supraposinormal 

TV T* = T*UT 

(𝑇∗)−1𝑇𝑉𝑇∗𝑇−1 = (𝑇∗)−1𝑇∗𝑈𝑇𝑇−1 

(𝑇∗)−1𝑇𝑉𝑇∗𝑇−1 = 𝑈 

 

Take inverses 

𝑇(𝑇∗)−1𝑉−1𝑇−1𝑇∗ = 𝑈−1 

(𝑇∗)−1𝑉−1𝑇−1 =  𝑇−1𝑈−1(𝑇∗)−1 

by Theorem4  𝑈−1  and  𝑉−1  are positive, so  𝑇−1  is 

a supraposinormal. 

Proposition 4. If A ∈ B(H) is (p, k)-

quasisupraposinormal operator and B* ∈  B(H) is a 

supraposinormal operators then 𝑀𝐴,𝐵 is 

supraposinormal operator. 

Proof :  Since A and B are supraposinormal 

𝑀𝐴,𝐵 𝑉 𝑀𝐴,𝐵
∗ = 𝐴𝑉𝐴∗𝑋𝐵∗𝑉𝐵 

   𝐴∗𝑈𝐴𝑋𝐵𝑈𝐵∗                                                              

= 𝑀𝐴,𝐵
∗  𝑈 𝑀𝐴,𝐵 . 

Theorem 5. Let T be a (p, q)-quasisupraposinormal 

operator. Then 

𝑇 = [
𝑇1 𝑇2

0 𝑇1
] 

On 𝐻 = 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +   ker (𝑇∗𝑘) , where 𝑇1 is p-

supraposinormal operator and 𝑇3
𝑘 = 0. 
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Proof:  Consider the decomposition  𝐻 =

𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +   ker (𝑇∗𝑘),  since  𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is an 

invariant subspace of T, T has the matrix 

representation 

𝑇 = [
𝑇1 𝑇2

0 𝑇1
] 

with respect to  𝐻 = 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +   ker (𝑇∗𝑘)  Let Q 

be the orthogonal projection on 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Then 𝑇1 = 

TQ and T* = QT*, because of  

(𝑇∗)𝑘(𝑇𝑉𝑇∗)𝑝 =  (𝑇∗𝑈𝑇)𝑝𝑇𝑘 , 
Lowner-Heinz’s inequality [9, 10], and Hansen’s 

inequality we have 

(𝑇1𝑉𝑇1
∗)𝑝 = (𝑇𝑄𝑉𝑄𝑇∗)𝑝 ≤ 𝑄(𝑇𝑉𝑇∗)𝑝𝑄

= 𝑄(𝑇∗𝑈𝑇)𝑝𝑄 ≤ (𝑄𝑇∗𝑈𝑇𝑄)𝑝

= (𝑇1
∗𝑈𝑇1)𝑝   ….   (1) 

(𝑇1
∗𝑈𝑇1)𝑝 = (𝑄𝑇∗𝑈𝑇𝑄)𝑝 ≤ 𝑄(𝑇∗𝑈𝑇)𝑝𝑄

= 𝑄(𝑇𝑉𝑇∗)𝑝𝑄 ≤ (𝑇𝑄𝑉𝑄𝑇∗)𝑝

= (𝑇1𝑉𝑇1
∗)𝑝 .  …   (2) 

From (1) and (2) we see that T1 is p-supraposinormal 

on 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

Let x = 𝑥1 + 𝑥2  and y = 𝑦1 + 𝑦2 in 𝐻 = 𝑟𝑎𝑛(𝑇𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +

 ker(𝑇∗𝑘).  Then 

(𝑇3
∗𝑥2, 𝑦2) = (𝑇𝑘(𝐼 − 𝑄)𝑥, (𝐼 − 𝑄)𝑦) = 0 

for all x, y ∈ H. Thus 𝑇3
𝑘 = 0. 

Lemma 3. Let T be a (p, q)-quasisupraposinormal 

operator on a Hilbert space H. If 𝜆 ∈ ℂ , 𝑥 ∈ 𝐻 and 

𝑇𝑥 = 𝜆𝑥, then T*x = 𝜆̅x. 

Proof of this Lemma is similar to the proof of 

Lemma 2. 

The second generalization of Fuglede-Putnam 

Theorem is as follows: 

Theorem 6. If A ∈ B(H) is (p, k)-

quasisupraposinormal operator and B ∈ B(H) is 

invertible with invertible interrupters (U,V) and 

supraposinormal operator such that AX = XB, for 

some X ∈ S1, then A*X = XB*. 

Proof of this Theorem is similar to the proof of 

Theorem 3. 
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