Semi Ideal on Supra Topological Space

Mayadah Khalil Ghaffar

Department of Physics, College of Science, University of Tikrit, Tikrit, Iraq

Abstract

In this paper we introduces the ideal on supra topological space and we shall discuss the properties of this space. In this space we introduces two operators ()*^{μ} and ψ_{μ} . A generalized set has also been introduced in this space ()*^{μ} and ψ_{μ} .

A generalized set has also been introduced in this space with the help of ψ_u operator.

1. Introduction

The concept of ideal in topological space was first introduced by Kuratowski [5] and Vaidyanathswamy[13]. They also have defined local function in ideal topological space. Further Hamlett and Jankovic in [3] and [4] studied the properties of ideal topological spaces and they have introduced another operator called ψ operator. They have also obtained a new topology from original ideal topological space. Using the local function, they defined a Kuratowski Closure operator in new topological space.

Further, they showed that interior operator of the new topological space can be obtained by ψ - operator. Modak and Bandyopadhyay [9] in 2007 have defined generalized open sets using ψ operator. More recently AI-Omri and Noiri[1] have defined the ideal m-space and introduced two operators as like similar to the local function and ψ operator.

Different types of generalized open sets like semiopen[6], preopen[7], semi per open[2], α -open[11] already are there in literature and these generalized sets have a common property which is closed under arbitrary union. Mashhour et al[8] put all of the sets in a pocket and defined a generalized space which is supra topological space. In this space we have introduced ideal and defined two set operators, μ local function and $S\psi_{\mu}$ operator. Further

we have discussed the properties of these two operators. Finally we have introduced Sµ-codense ideal, and $S\psi_{\mu}$ -C set with the help of $S\psi\pi$ operator and discussed the properties of such notions.

2. Preliminaries

In this section we introduced some definitions and results which are relevant of this paper.

Definition 2.1.[5] A nonempty collection **I** of subsets of X is called an ideal on X if :

(i). $A \in \mathbf{I}$ and $B \subset A$ implies $B \in \mathbf{I}$ (heredity);

(ii). $A \in I$ and $B \in I$ implies $A \cup B \in I$ (finite additivity).

Definition 2.2.[8] A sub family μ of the power set $\mathscr{P}(X)$ of a nonempty set X is called a supra topology on X if μ satisfies the following conditions:

1. μ contains ϕ and X,

2. μ is closed under the arbitrary union.

The pair (X, μ) is called a supra topological space. In this respect, the member of μ is called supra open set in (X, μ) . The complement of supra open set is called supra closed set.

Definition 2.3.[12] Let (X, μ) be a supra topological space and $A \subset X$. Then supra interior and supra closure of A in (X, μ) defined as $\cup \{ U : U \subseteq A, U \in \mu \}$ and $\cap \{ F : A \subseteq F, X - F \in \mu \}$ respectively.

The supra interior and supra closure of A in (X, μ) are denoted as $Int^{\mu}(A)$ and $Cl^{\mu}(A)[13]$ respectively. From definition, $Int^{\mu}(A)$ is a supra open set and $Cl^{\mu}(A)$ is a supra closed set.

Definition 2.4. Let (X, μ) be a supra topological space and $M \subset X$. Then M is said to a supra neighbourhood of a point x of X if for some supra open set $U \in \mu$, $x \in U \subset M$.

Theorem 2.5. Let (X, μ) be a supra topological space and $A \subset X$. Then

(i). $Int\mu(A) \subseteq A$.

(ii). A $\in \mu$ if and only if $Int^{\mu}(A) = A$.

(iii). $Cl^{\mu}(A) \supseteq A$.

(iv). A is a supra closed set if and only if $Cl^{\mu}(A) = A$.

(v). $x \in Cl^{\mu}(A)$ if and only if every supra open set U_x containing x, $U_x \cap A \neq \phi$.

Proof.(i). Proof is obvious from the definition of supra interior.

(ii). Since arbitrary union of supra open sets is again a supra open set, then proof is obvious.

(iii). Proof is obvious from the definition of supra closure.

(iv). If A is a supra closed set, then smallest supra closed set containing A is A. Hence $Cl^{\mu}(A) = A$.

(v). Let $x \in Cl^{\mu}(A)$. If possible suppose that $U_x \cap A = \phi$, where U_x is a supra open set containing x. Then A $\subset (X - U_x)$ and $X - U_x$ is a supra closed set containing A. Therefore $x \in (X - U_x)$, a contradiction. Conversely supposed that $U_x \cap A \neq \phi$, for every supra open set U_x containing x. If possible suppose that $x \notin Cl^{\mu}(A)$, then $x \in X - Cl^{\mu}(A)$. Then there is a $U'_x \in \mu$ such that $U'_x \subset (X - Cl^{\mu}(A))$, i.e., $U'_x \subset (X - Cl^{\mu}(A)) \subset (X - A)$. Hence $U'_x \cap A = \phi$, a contradiction. So $x \in Cl^{\mu}(A)$.

Theorem2.6. Let (X, μ) be a supra topological space and $A \subset X$. Then *Int* $^{\mu}(A) = X - Cl^{\mu}(X - A)$.

Proof. Let $x \in Int^{\mu}$ (A). Then there is $U \in \mu$, such that $x \in U \subset A$. Hence $x \notin X - U$, i.e., $x \notin Cl^{\mu}$ (X – U), since X – U is a supra closed set. So $x \notin Cl^{\mu}$ (X – A) (from Definition2.3., Cl^{μ} (X – A) $\subset Cl^{\mu}$ (X – U)) and hence $x \in X - Cl^{\mu}(X - A)$. Conversely suppose that $x \in X - Cl^{\mu}(X - A)$. So $x \notin Cl^{\mu}(X - A)$, then there is a supra open set U_x containing x, such

that $U_x \cap (X - A) = \phi$. So $U_x \subset A$. Therefore $x \in Int^{\mu}(A)$. Hence the result.

3. ()*µ operator

In [3] and [4] Hamlett and Jankovic have considered the local function in ideal topological space and they have obtained a new topology. In this section we shall introduce similar type of local function in semi supra topological space. Before starting the discussion we shall consider the following concept.

A semi supra topological space (X, S μ) with an semi ideal SI on X is called an Semi ideal supra topological space and denoted as (X, S μ , SI).

At first we define following:

Definition 3.1.Let (X, Sµ, SI) be a semi ideal supra topological space. A set operator ()*^{μ} : $\mathscr{P}(X) \rightarrow$ $\mathscr{P}(X)$, is called the μ -local function of SI on X with respect to S μ , is defined as: (A)*^{μ}(I, μ) = { x \in X: U $\cap A \notin I$, for every U $\in \mu(x)$ }, where $\mu(x) =$ { U \in S μ : x \in U}.

This is simply called μ -local function and simply denoted as $A^{*\mu}$.

We have discussed the properties of μ -local function in following theorem:

Theorem3.2. Let $(X, S\mu, SI)$ be an semi ideal supra topological space, and let A, B, A1, A2, ----- Ai,---- be subsets of X. Then

(i). $\phi^{*\mu} = \phi$.

(ii). A \subset B implies $A^{*\mu} \subset B^{*\mu}$.

(iii). for another semi ideal $SJ \supseteq SI$ on X, $A^{*\mu}(SJ) \subset A^{*\mu}(SI)$.

(iv). $A^{*\mu} \subset Cl^{\mu}(A)$.

(v). $A^{*\mu}$ is an semi supra closed set.

(vi). $(A^{*\mu})^{*\mu} \subset A^{*\mu}$.

(vii). $A^{*\mu} \cup B^{*\mu} \subset (A \cup B)^{*\mu}$.

(viii). $\cup_i A^{*\mu} \subset (\cup_i A_i)^{*\mu}$.

(ix). $(A \cap B)^{*\mu} \subset A^{*\mu} \cap B^{*\mu}$.

(x). for $V \in \mu$, $V \cap (V \cap A)^{*\mu} \subset V \cap A^{*\mu}$.

(xi). for $I \in SI$, $(A \cup SI)^{*\mu} = A^{*\mu} = (A - SI)^{*\mu}$.

Proof. (i). Proof is obvious from the definition of μ -local function.

(ii). Let $x \in A^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap A \notin$ **SI**. Since $U \cap A \subset U \cap B$, then $U \cap B \notin$ **SI**. This implies that $x \in B^{*\mu}$.

(iii). Let $x \in A^{*\mu}(S\mathbf{J})$. Then for every $U \in \mu(x)$, $U \cap A \notin S\mathbf{J}$. This implies that $U \cap A \notin S\mathbf{I}$, so $x \in A^{*\mu}(S\mathbf{I})$. Hence $A^{*\mu}(S\mathbf{J}) \subset A^{*\mu}(S\mathbf{I})$.

(iv). Let $x \in A^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap A \notin$ **SI**. This implies that $U \cap A \neq \phi$. Hence $x \in Cl^{\mu}(A)$.

(v). From definition of semi supra neighbourhood, each semi supra neighbourhood M of x contains a $U \in \mu(x)$. Now if $A \cap M \in I$ then for $A \cap U \subset A \cap M$, $A \cap U \in SI$.

It follows that X - $A^{*\mu}$ is the union of semi supra open sets. We know that the arbitrary union of semi supra open sets is a semi supra open set. So X - $A^{*\mu}$ is an semi supra open set and hence $A^{*\mu}$ is an semi supra closed set.

(vi). From (iv), $(A^{*\mu})^{*\mu} \subset \text{Cl} (A^{*\mu}) = A^{*\mu}$, since $A^{*\mu}$ is an semi supra closed set.

ISSN: 1813 – 1662 (Print) E-ISSN: 2415 – 1726 (On Line)

(vii). We know that $A \subset (A \cup B)$ and $B \subset (A \cup B)$. Then from (ii), $A^{*\mu} \subset (A \cup B)^{*\mu}$ and $B^{*\mu} \subset (A \cup B)^{*\mu}$. $B)^{*\mu}$. Hence $A^{*\mu} \cup B^{*\mu} \subset (A \cup B)^{*\mu}$.

(viii). Proof is obvious from (vii).

(ix). We know that $A \cap B \subset A$ and $A \cap B \subset B$, then from (ii), $(A \cap B)^{*\mu} \subset A^{*\mu}$ and

 $(A \cap B)^{*\mu} \subset B^{*\mu}$. Hence $(A \cap B)^{*\mu} \subset A^{*\mu} \cap B^{*\mu}$.

(x). Since $V \cap A \subset A$, then $(V \cap A)^{*\mu} \subset A^{*\mu}$. So $V \cap (V \cap A)^{*\mu} \subset V \cap A^{*\mu}$.

(xi). Since $A \subset (A \cup SI)$, then

 $A^{*\mu} \subset (A \cup SI)^{*\mu}$ -----(i).

Let $x \in (A \cup SI)^{*\mu}$. Then for every $U \in \mu(x)$, $U \cap (A \cup SI) \notin SI$. This implies that $U \cap A \notin SI$ (If possible suppose that $U \cap A \in SI$. Again $U \cap SI \subset SI$ implies $U \cap SI \in SI$

and hence $\mathbb{U}\cap(\mathbb{A}\cup \mathrm{SI})\in \mathrm{SI}$, a contradiction). Hence $\mathbf{x}\in A^{*\mu}$ and

 $(A\cup SI)^{*\mu}\subset A^{*\mu}-\dots\dots(ii).$

From (i) and (ii) we have

 $(A \cup SI)^{*\mu} = A^{*\mu}$ -----(iii).

Since $(A - SI) \subset A$, then

 $(A - SI)^{*\mu} \subset A^{*\mu}$ -----(iv).

For reverse inclusion, let $x \in A^{*\mu}$. We claim that $x \in (A - SI)^{*\mu}$, if not, then there is $U \in \mu(x)$, $U \cap (A - SI) \in SI$. Given that $I \in SI$, then $SI \cup (U \cap (A - SI)) \in SI$. This implies that $SI \cup (U \cap A) \in SI$. So, $U \cap A \in SI$, a contradiction to the fact that $x \in A^{*\mu}$. Hence

 $A^{*\mu} \subset (A - SI)^{*\mu} - \dots (v).$

From (iv) and (v) we have $A^{*\mu} = (A - SI)^{*\mu}$ -----(vi).

Again from (iii) and (vi), we get $(A \cup SI)^{*\mu} = A^{*\mu} = (A - SI)^{*\mu}$.

Following example shows that $A^{*\mu} \cup B^{*\mu} = (A \cup B)^{*\mu}$ does not hold in general.

Example3.3. Let $X = \{a, b, c\}, \mu = \{\phi, X, \{a\}, \{b, \{a, b\}, \{a, c\}, \{b, c\}, \{c\}\}.$

 $SI = \{\phi, \{c\}\}$. Then semi supra open sets containing

'a' are: X,{a},{a,b}, {a,c}; semi supra open sets containing

'b' are: X, $\{b\}$, $\{a,b\}$, $\{b,c\}$; semi supra open sets containing

'c' are: X, $\{a,c\}$, $\{b,c\}$, Consider A = $\{a,c\}$ and B = $\{b,c\}$, then $A^{*\mu} = \{a\}$ and

 $B^{*\mu} = \{b\}$. Now $(A \cup B)^{*\mu} = \{a, b\}^{*\mu} = \{a, b, c\}$. Hence $A^{*\mu} \cup A^{*\mu} \neq (A \cup B)^{*\mu}$.

4. ψ_{μ} operator

In this section we introduce another set operator $S\psi_{\mu}$ in (X, S μ , **SI**). This operator is, as like similar of ψ operator [10],[3] in ideal topological space.

Definition of $S\psi_{\mu}$ operator is as follows:

Definition4.1. Let $(X, S\mu, SI)$ be a semi ideal supra topological space. An operator $\psi_{\mu} : \wp(X) \to \mu$ is defined as follows for every $A \in \wp(X)$, $S \psi_{\mu}(A) = \{x \in X: \text{ there exists a } U \in \mu(x) \text{ such that } U - A \in SI \}$.

We observe that $\psi_{\mu}(A) = X - (X - A)^*\mu$.

The behaviors of the operator $S\psi_{\mu}$ has been discussed in the following theorem:

Theorem4.2. Let $(X,S\mu, SI)$ be a semi ideal supra topological space.

(i). If $A \subseteq X$, then $S\psi_{\mu}(A) \supset Int^{\mu}(A)$. (x). We know that X- (X - (A - SI)) $^{*\mu} = X -$ (ii). If $A \subseteq X$, then $S\psi_{\mu}(A)$ is semi supra open. $((X - A) \cup SI)^{*\mu} = X - (X - A)^{*\mu}$ (iii). If $A \subseteq B$, then $S\psi_u(A) \subseteq S\psi_u(B)$. from Theorem3.2.(xi)). So $I_1(A - SI) = S\psi_{\mu}(A)$. (iv). If A, $B \in \mathcal{D}(X)$, then $S\psi_{\mu}(A)\cup S\psi_{\mu}(B) \subset S\psi_{\mu}(A\cup B).$ $((X - A) - SI)^{*\mu} = X - (X - A)^{*\mu}$ (v). If A, $B \in \mathcal{D}(X)$, then $S\psi_{\mu}(A\cap B) \subset S\psi_{\mu}(A)\cap S\psi_{\mu}(B).$ (vi). If $U \in \mu$, then $U \subset S\psi_{\mu}(U)$. (vii). If $A \subseteq X$, then $S\psi_{\mu}(A) \subset S\psi_{\mu}(\psi_{\mu}(A))$. (viii). If $A \subseteq X$, then $S\psi_{\mu}(A) = S\psi_{\mu}(S\psi_{\mu}(A))$ if and only if $(X - A)^{*\mu}$ $((X - A)^{*\mu})^{*\mu}$. (ix). If $A \in SI$, then $S\psi_{\mu}(A) = X - X^{*\mu}$. (x). If $A \subseteq X$, $I \in SI$, then $S\psi_{\mu}(A - SI) = S\psi_{\mu}(A)$. (xi). If A \subseteq X, I \in SI, then $S\psi_{\mu}(A\cup SI) = S\psi_{\mu}(A)$. (xii). If $(A - B) \cup (B - A) \in SI$, then $S\psi_u(\mathbf{A}) = S\psi_u(\mathbf{B}).$ Proof.(i). From definition of $S\psi_{\mu}$ operator, $S\psi_{\mu}(A) = X - (X - A)$. Then $S\psi_{\mu}(A) = X$ $-(X - A)^{*\mu} \supset X - Cl^{\mu}(X - A)$, from Theorem 3.1(iv). Hence $S\psi_{\mu}(A) \supset Int^{\mu}(A)$ (using Theorem2.7.). (ii). Since $(X - A)^{*\mu}$ is a semi-supra closed set (from Theorem3.2(v)), then X - $(X - A)^*\mu$ is a semi supra open set. Hence $\psi_{\mu}(A)$ is semi supra open. (iii). Given that $A \subseteq B$, then $(X - A) \supseteq (X - B)$. Then from Theorem3.2(ii), $(X - A)^{*\mu} \supseteq (X - B)^{*\mu}$ and hence $S\psi_{\mu}(A) \subseteq$ $S\psi_{\mu}(\mathbf{B}).$ (iv). Proof is obvious from above property. (v). Since $A \cap B \subset A$ and $A \cap B \subset B$, then from (iii), $S\psi_{\mu}(A\cap B) \subset S\psi_{\mu}(A)\cap S\psi_{\mu}(B).$ (vi). Let $U \in S\mu$. Then (X - U) is a semi supra closed set and hence $Cl^{\mu}(X - U) =$ (X - U). This implies that $(X - U)^{*\mu} \subset Cl^{\mu}(X - U)$ = (X - U). Hence $U \subset X - (X - U)^{*\mu}$, so $U \subset S\psi_{\mu}(U)$. (vii). From (ii), $\psi_{\mu}(A) \in \mu$. Again from (vi), $S\psi_{\mu}(A)$ $\subset \psi_{\mu}(\psi_{\mu}(\mathbf{A})).$ (viii). Let $S\psi_{\mu}(A) = S\psi_{\mu}(S\psi_{\mu}(A))$. Then X - $(X - A)^{*\mu} = S\psi_{\mu} (X - (X - A)^{*\mu}) =$ X - $(X - (X - (X - A)^{*\mu})^{*\mu}) = X - ((X - A)^{*\mu})^{*\mu}$. This implies that $(X - A)^{*\mu} =$ $((X - A)^{*\mu})^{*\mu}$. Conversely suppose that $(X - A)^{*\mu} =$ $((X - A)^{*\mu})^{*\mu}$ hold. Then X - $(X - A)^{*\mu} = X - ((X - A)^{*\mu})^{*\mu}$ and X -

 $(X - A)^{*\mu} =$ $X - (X - (X - (X - A)^{*\mu}))^{*\mu} = X - (X - A)^{*\mu}$ $S\psi_{\mu}(A)$) *^{μ}. Hence

 $S\psi_{\mu}(\mathbf{A}) = S\psi_{\mu}(S\psi_{\mu}(\mathbf{A})).$

(ix). We know that $S\psi_{\mu}(A) = X - (X - A)^{*\mu} = X$ - $X^{*\mu}$ (from Theorem 3.2.(xi)).

(xi). We know that $X - (X - A \cup SI)^{*\mu} = X -$

using the Theorem3.1.(xi)). Thus $S\psi_{\mu}(A\cup SI) = S\psi_{\mu}(A).$ (xii). Given that $(A - B) \cup (B - A) \in SI$, and let A - B $= SI_1$, B – A $= SI_2$. We observe that SI_1 and $SI_2 \in SI$ by heredity. Also observe that B $= (A - SI_1) \cup SI_2$. Thus $S\psi_{\mu}(\mathbf{A}) = S\psi_{\mu}(\mathbf{A} - SI_1) = S\psi_{\mu}((\mathbf{A} - SI_1) \cup SI_2) =$ $\psi_{\mu}(\mathbf{B}).$ We know that $U \subset S\psi_{\mu}$ (U), for $U \in S\mu$. But we give an example of a set A which is not semi supra open set but satisfies $A \subseteq S\psi_{\mu}(A)$. **Example**4.3. Let $X = \{a, b, c\}, \mu =$ $\{\phi, X, \{a\}, \{a, c\}, \{b, c\}\}, SI = \{\phi, \{c\}\}.$ Then for A = {a, b}, $S\psi_{\mu}$ (A) = X - {c}*^{\mu} = X - \phi = X. Here $A \subseteq S\psi_{\mu}(A)$, but A is not a semi supra open set. In the following example we shall show that $S\psi_{\mu}(A\cap B) = S\psi_{\mu}(A)\cap S\psi_{\mu}(B)$ does not hold in general. Example 4.4. Consider the Example3.3. Here we consider $A = \{a,c\}$ and $B = \{a,b\}$, then $S\psi_{\mu}(A) = X - \{a, c\}^{*\mu} = X - \{a\} = \{b, c\}$ and $S\psi_{\mu}$ (B) = X - {{b, c}}*^{\mu} = X - {b} = Here we {a, c}. are not able to define an interior operator with the help of $S\psi_{\mu}$ operator because $S\psi_{\mu}$ (A \cap B) $\neq S\psi_{\mu}$ (A) $\cap S\psi_{\mu}$ (B) in general. 5. Su-codense semi Ideal In this section we introduce concept in semi ideal supra topological space. **Definition5.1.** A semi ideal **SI** in a space $(X, S\mu, SI)$ is called Sµ-codense ideal if Sµ∩SI ={ ϕ }. Following theorems are related to Sµ-codense ideal. **Theorem**5.2. Let $(X, S\mu, SI)$ be a semi-ideal supra topological space and SI is $S\mu$ -codense with $S\mu$. Then $X = X^{*\mu}$. **Proof.** It is obvious that $X \subseteq X$. For converse, suppose $x \in X$ but $x \notin X^{*\mu}$. Then there exists $U_x \in$ $\mu(\mathbf{x})$ such that $U_{\mathbf{x}} \cap \mathbf{X} \in \mathbf{SI}$. That is $U_{\mathbf{x}} \in \mathbf{SI}$, a contradiction to the fact that $S \mu \cap SI = \{\phi\}$. Hence X $= X^{*\mu}$. **Theorem**5.3. Let $(X, S\mu, SI)$ be a semi ideal supra topological space. Then following conditions are equivalent: (i). S $\mu \cap$ SI = { ϕ }. (ii). $S\psi_u(\phi) = \phi$. (iii). if $I \in SI$, then $S\psi_{\mu}(I) = \phi$. Proof. (i) \Rightarrow (ii). Given that S $\mu \cap$ SI = { ϕ }, then $\psi \pi(\phi) = \mathbf{X} - (\mathbf{X} - \phi)^* \mu =$ X - $X^{*\mu} = \phi$ (by Theorem 5.2.). (ii) \Rightarrow (iii). $S\psi_{\mu}(I) = X - (X - I)^{*\mu} = X - X^{*\mu}$ (by Theorem3.2.(xi)) = $X - X^{*\mu} = \phi$

by Theorem 5.2.).

(iii) \Rightarrow (i). Suppose that $A \in S\mu \cap SI$, then $A \in SI$ and by (iii), $S\psi_{\mu}$ (A) = ϕ . Since

 $A \in S\mu$, then by Theorem 4.2.(vi) we have $A \subseteq$ $S\psi_{\mu}(A) = \phi$. Hence $S\mu \cap SI = \{\phi\}$.

6. ψμ - **C** sets

Modak and Bandyopadhyay in [9] have introduced a generalized set with the help of $S\psi_{\mu}$ - operator in semi ideal topological space (X, Sµ, SI). In this section we shall introduce a set with the help of $S\psi_{\mu}$ in (X, Sµ, SI) space. Further we shall discuss the properties of this type of sets.

Definition6.1. Let $(X, S\mu, SI)$ be a semi ideal supra topological space. A subset A of X is called a $S\psi_{\mu}$ - C set if $A \subseteq Cl^{\mu}$ ($S\psi_{\mu}(A)$).

The collection of all $S\psi_{\mu}$ - C sets in (X, Sµ, SI) is denoted by $S\psi_{\mu}(X, S\mu)$.

Theorem 6.2. Let $(X, S\mu, SI)$ be an ideal supra topological space. If $A \in S\mu$, then

 $A \in S\psi_{\mu}(X, S\mu).$

Proof. From Theorem4.2.(vi) it follows that $S\mu \subseteq$ $S\psi_{\mu}(X, S\mu).$

Now we give an example which shows that the reverse implication is not true.

References

[1] A. AI-Omari and T. Noiri, "On ψ^* -operator in ideal m-spaces", Bol. Soc. Paran. Mat. (3s) v.30 1 (2012) 53-66, ISSN-00378712 in press.

[2] D. Andrijevic, "Semi-preopen sets", Mat. Vesnik, 38 (1986), 24 – 32.

[3] T.R. Hamlett and D. Jankovic, "Ideals in topological spaces and the set operator Ψ ", Bull. U.M.I., (7), 4-B(1990), 863 – 874.

[4] D. Jankovic and T.R. Hamlett," New topologies from old via ideals", Amer. Math. Monthly, 97(1990) 295 - 310.

[5] K. Kuratowski, "Topology", Vol.1 Academic Press, New York, 1966.

[6] N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly 70(1963) 36-41.

[7] A.S. Mashhur, M.E. Abd EI-Monsef and I.A. Hasanein, "On pre topological Spaces", Bull. Math. R.S. Roumanie (N.S) 28(76)(1984) No.1, 39-45.

Example 6.3. Consider the Example4.1. and we get $A \in S\psi_{\mu}(X, S\mu)$ but $A \notin S\mu$.

We give an example which shows that any supra closed in (X, Sµ, SI) may not be a $S\psi_{\mu}$ - C set.

In the following example, by $C(S\mu)$ we denote the family of all semi supra closed sets in $(X, S\mu)$.

Example6.4. We consider the Example 3.3. Here A = $\{b\} \in C(S\mu)$. Then

 $S\psi_{\mu}(A) = X - \{a, c\}^{*\mu} = X - X = \phi$. Therefore $A \in$ C(Sµ) but $A \notin S\psi_{\mu}(X, S\mu)$.

Theorem 6.5. Let $\{A\alpha : \alpha \in \Delta\}$ be a collection of nonempty $S\psi_{\mu}$ - C sets in semi ideal supra topological space (X, S μ , SI), then $\bigcup_{\alpha \in \Delta} A_{\alpha} \in S\psi_{\mu}$ $(\mathbf{X}, \mathbf{S}\boldsymbol{\mu}).$

Proof. For each $\alpha \in \Delta$, $A_{\alpha} \subseteq Cl^{\mu}(S\psi_{\mu}(A_{\alpha})) \subseteq$ $\operatorname{Cl}_{\mu}(S\psi_{\mu}(\bigcup_{\alpha\in\Delta}A_{\alpha})))$. This implies that $\bigcup_{\alpha\in\Delta}A_{\alpha}\subseteq$ $\operatorname{Cl}\mu(S\psi_{\mu}(\bigcup_{\alpha\in\Delta}A_{\alpha})))$. Thus $\bigcup_{\alpha\in\Delta}A_{\alpha}\in S\psi_{\mu}(X, S\mu)$.

The following example shows that the intersection of two $S\psi_{\mu}$ - C sets in (X, Sµ, SI) may not be a $S\psi_{\mu}$ - C.

Example 6.6. Consider the Example4.4. Here we consider A = {b, c} and B = {a, c}, then $S\psi_{\mu}(A) = X - C$ $\{a,c\}^*\mu = X - \{a\} = \{b,c,d\}$ and $S\psi_{\mu}$ (A) = X - $\{b, c\}^{*\mu} = X - \{b\} = \{a, c\}$. So A, B $\in S\psi_{\mu}$ (X, S μ), but $S\psi_{\mu}({c}) = X - {a,b,c} = \phi$, and ${b} \notin S\psi_{\mu}(X,$ Sμ).

[8] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, "On supra topological spaces", Indian J. Pure and Appl. Math. 14(4) (1983), 502 – 510.

[9] S. Modak and C. Bandyopadhyay, "A note on ψ – operator", Bull. Malyas. Math. Sci. Soc. (2) 30 (1) (2007).

[10] T. Natkaniec," On I-continuity and I semicontinuity points", Math. Slovaca, 36, 3 (1986), 297 - 312.

[11] O. Njastad," On some classes of nearly open sets", PacificJ. Math15(1965), 961-970.

[12] O. R. Sayed and T. Noiri," On supra b-open sets and supra b-continuity on topological spaces", European J. Pure and Appl. Math., vol. 3 no. 2. 2010, 295-302.

[13] R. Vaidyanathaswamy, "Set topology", Chelsea Publishing Company, 1960. Received: July, 2011

شبة المثالي للفضاع التبولوجي الفوقي ميادة خليل غفار قسم الفيزياء ، كلية العلوم ، جامعة تكريت ، تكريت ، العراق

الملخص

 ψ_{μ} في هذا البحث قدمنا المثالي في الفضاء التبولوجي الفوقي ونناقش خصائص هذا الفضاء. في هذا الفضاء نقدم مؤثرين هما $^{\mu}*()$ و .المجموعة المعممه قدمت في هذا الفضاء. المجموعة المعممه قدمت ايضاً في هذا الفضاء بوساطة المؤثر ψ_u .