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Abstract: 
The aim of this paper, is to study electrical cardiography problem. Thus, we construct the state space system of 

this model as mathematical model. Moreover, we present some definitions and results which is described some 

concepts of linear control system analysis related to this problem. More precisely, the sufficient conditions which 

characterize the observability notion of linear dynamical controlled system are presented and discussed. Finally, 

we prove that, the electrical  cardiography model is completely observable system over finite time 𝑡𝜖 [0, 𝑇]. 
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𝟏. Introduction 
The great progress in control science since 1955 has 

change basic concept of analysis and synthesis of 

control system. This progress has depended largely 

on mathematical study of optimal control 

systems[1 ].  Modern control theory which is based 

on state space concepts is extremely useful not only 

for designing a specific optimal control system but 

also for improving the principle on which the system 

well operate [2 ].  In recent years, control system 

have assumed an increasing important role in the 

development and advancement of modern civilization 

and technology. Practically every aspect of our day-

to-day activities is affected by some type of control 

system. Control system are found in abundance in all 

sectors of industry, such machine-tool control, quality 

of control manufactured products, automatic 

assembly line, …[3]. Considered system may be 

described by the following linear dynamical form 

{

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑥(0) =  𝑥0                       

𝑥(𝑇) = 0                         

           (𝑆1) 

where 𝐴, 𝐵 are 𝑛 × 𝑛 and 𝑛 × 𝑝 matrices 

(respectively), 𝑥(𝑡)𝜖 𝐿2(0, 𝑇; 𝑅𝑛) is the Hilbert state 

space with 𝑥𝜖 𝑅𝑛,  𝑢(𝑡)𝜖 𝐿2(0, 𝑇; 𝑅𝑝) is the Hilbert 

control space with 𝑢𝜖 𝑅𝑝, and �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
is the state space equation with initial state 

𝑥0 𝜖 𝐿
2(0, 𝑇; 𝑅𝑛) and final state 𝑥(𝑇)𝜖 𝐿2(0, 𝑇; 𝑅𝑛). 

The system is augmented by the following output 

function 

𝑦(𝑡) = 𝐶𝑥(𝑡) 
(𝑆2) Where 𝐶 is  𝑛 × and 𝑦(𝑡)𝜖 𝐿2(0, 𝑇; 𝑅𝑞) is the 

Hilbert observation space with 𝑦𝜖 𝑅𝑞. The systems 

(𝑆1)- (𝑆2) are more general mathematical model 

represent various cases [1-3].   

The problem of feedback control, it is common to 

think of  biological systems as fragile. However, most 

are very stable, and it is almost a tautology to say so, 

because they must all operate in the fact of changing 

and fluctuating environmental parameters; so if they 

weren't stable, they wouldn't be here. We are familiar 

from engineering with the concept of feedback 

control whereby variables sensed and parameters are 

then rest to change the behavior of the system. The 

nephrons in the kidney sense Nacl concentration in 

the blood and adjust filtration rate to regulate salt and 

water in the body. The baroreceptor loop regulate 

blood pressure, heart rate, and peripheral resistance to 

adjust the circulation to different challenge. 

Numerous such control systems are  known and 

studied in animal and plant physiology [4]. 
Mathematical modeling of blood flow and electric 

heart activity have been researched extensively 

throughout the previous decades.  

There are multiple reasons for this focus. Firstly, 

cardiovascular diseases are leading cause of death in 

the developed part of world. Secondly, heart activity 

and arterial blood flow can appropriately described 

by equations already known from physics. 

Consequently, the major research effort is now on the 

design of efficient computer programs for obtaining 

accurate approximations [5, 6]. 
For the untrained in mathematics, it can be unclear 

exactly what a mathematics model is. In figure 1, an 

approximate solution to a mathematical model of 

blood flow is shown.  
 

 
Fig. 1: ECG of various electrocardiography with deferent heartbeat cases. 
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It is a snapshot of the flow at a given time angle. 

Observe that only the flow in a slice of artery is 

shown. The mathematical model, and the algorithm 

used to approximate a solution, independent of such 

choices (time, angle, slice, etc,…) [7].  Thus the 

model in figure 1 is a spatial case of general 

mathematical model systems (𝑆1)- (𝑆2). Thus, the 

same computer program can be  used  for any set of 

choice. Consequently, very detailed studies of the 

flow can be performed. Moreover, the model does not 

depend on the actual geometry of the artery. Thus, the 

same computer program can be used on any artery 

and any patient. One can even apply modifications to 

an artery and see how this change the flow. In this 

way, it might be possible to predict the outcome of a 

surgery without actually having to perform it. For 

more dissection, see [4]. For more detailed exposition 

of the mathematics and numerical solution 

approaches, see [8].  
The purpose of this work is to study the electrical 

cardiography model and to prove that, this model is 

completely observable system through state space 

analysis. The outline of this, is organized as the 

following:  

Section 1, concerns some definitions and 

characterizations in control systems. Section 2, 

related to study the solution method of linear control 

system and some mathematical approaches. Later 

section 3, devotes the observability notion of 

electrical cardiography model as control system. 

𝟐. Some definitions and characterizations in 

control systems 
In this section, we present some preliminaries related 

to the state space analysis as in ref.s [9 − 10] and we 

give some definitions and characterizations concern 

linear dynamical control systems.  

Definition 𝟐. 𝟏: 

State space analysis is very useful technique of 

analyzing control system. It is based on the concept 

of  state and is applicable to linear time varying,  non-

linear and multi-input multi-output systems. Thus, 

representation of  higher order system become 

simple. 

Definition 𝟐. 𝟐:  
In general, differential equation of an nth-order  

system is written by        
𝑦𝑛(𝑡) + 𝑎𝑛𝑦

𝑛−1(𝑡) + …+ 𝑎2�̇�(𝑡) + 𝑎1𝑦(𝑡) =  𝐹(𝑡) (1) 
Which also known as a linear ordinary differential 

equation if the coefficients 𝑎𝑛, 𝑎𝑛−1, … , 𝑎1 are not 

functions of 𝑦(𝑡). In this paper, because we treat only 

systems that contain lumped parameters, the 

differential equations encountered are all of  the 

ordinary type [3].  For the systems with distributed 

parameters, such as in heat-transfer systems, partial 

differential equations are used [3, 11 − 12]. 
Remark 𝟐. 𝟑: 
Let us define 

{

𝑥1(𝑡) =  𝑦(𝑡)          

𝑥2(𝑡) =  �̇�(𝑡)          
⋮          

𝑥𝑛(𝑡) =  𝑦
(𝑛−1)(𝑡)

  

An nth-order differential equation can be decomposed 

into n first-order differential equations as following 

{

�̇�1(𝑡) =  𝑥2(𝑡)    

�̇�2(𝑡) =  𝑥3(𝑡)    
⋮     

�̇�𝑛−1(𝑡) =  𝑥𝑛(𝑡)

          (2) 

From equations (1) and (2), we have  

{

�̇�𝑛(𝑡) =  𝑦
𝑛(𝑡) =                                

 𝐹(𝑡) − 𝑎𝑛𝑥𝑛(𝑡) …− 𝑎1𝑥1(𝑡) =      

−𝑎1𝑥1(𝑡), −⋯−, 𝑎𝑛𝑥𝑛(𝑡) +   𝐹(𝑡) 

  (3) 

Because, in principle first-order differential equations 

are used in the analytical studies of control systems. 

Notice that, the last equation (3) is obtained by the 

highest-order derivative term in equation  (1) to the 

rest of the terms. In control systems theory, the set of 

first order differential equations in (3) is called the 

state equations, and  𝑥1, 𝑥2, … , 𝑥𝑛 
are called the state 

variables.  
 

Remark 𝟐. 𝟒: 
The state of a system refers to the past, present and 

future  conditions of the system from mathematical 

perspective,  it is convenient to define a set of a state 

variables and state equations to model dynamic 

systems. As it turns out, the variables    
 

𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)          (4) 
defined in equation (2.2) are the state variable of  nth-

order system described by (1), and the nth-order 

differential equations are the state equations. 

In general, there are some basic rules regarding the 

definition of a state and what constitutes a state 

equation. The state variables must satisfy the 

following conditions:  

∗ At any time initial 𝑡 = 𝑡0, the state variables  
 

𝑥1(𝑡0), 𝑥2(𝑡0), … , 𝑥𝑛(𝑡0)          (5) 
define the initial states of the system. 

∗ Once the inputs of the system for  𝑡 ≥ 𝑡0 and initial 

states just defined are specified, the state variables 

should completely define the future behavior of the 

system. 

The state variables of a system are defined as a 

minimal set of variables,  

𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)   
Such that the knowledge of these variables at any 

time   𝑡0 and information on the applied input at time  

  𝑡0  are sufficient to determine the state of the system 

at any time  𝑡 > 𝑡0.  Hence, the space state form for n 

variables is given by 

�̇�(𝑡) = 𝐴𝑥(𝑡) +  𝐵𝑢(𝑡) 
        

(6) 
Where  𝑥(𝑡) is the state vector having n rows, 

𝑥(𝑡) =

[
 
 
 
 
 )(1 tx

)(2 tx

⋮

txn ( )]
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And  𝑢(𝑡) is the input vector with p rows, 

𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)
⋮

𝑢𝑝(𝑡)

] 

The coefficient matrices A and B are defined by 

𝐴 = [

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

]     (7) 

and 

𝐵 = [

𝑢11 ⋯ 𝑢1𝑛
⋮ ⋱ ⋮
𝑢𝑛1 ⋯ 𝑢𝑛𝑝

]      (8) 

Definition 𝟐. 𝟓: 
An output of a system is a variable that can be 

measured, but state variable does not always satisfy 

this requirement. For instance, in an electric motor, 

such variables as winding current, rotor velocity, and 

displacement can be measured physically, and these 

variables all qualify as output variables. In general, 

output can expressed as an algebraic combination of 

the state variables. For the system described by 

equation (1), if 𝑦(𝑡) is designed as the output 

equation (function) is simply given by   

          𝑦(𝑡) =  𝑥1(𝑡) 
then, in general, we have 

 

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
⋮

𝑦𝑛(𝑡)

] = 𝐶𝑥(𝑡)        (9) 

where  

𝐶 = [

𝐶11 ⋯ 𝐶1𝑛
⋮ ⋱ ⋮
𝐶𝑞1 ⋯ 𝐶𝑞𝑛

]         (10) 

 Definition 𝟐. 𝟔: 
State space is the n-dimensional space coordinates 

axis consists          

           𝑥1 − 𝑎𝑥𝑖𝑠, 𝑥2 − 𝑎𝑥𝑖𝑠, … , 𝑥𝑛 − 𝑎𝑥𝑖𝑠 
Any state can uniquely represented by a point in the 

state spaces. 

Definition 𝟐. 𝟕: 
Consider the following differentiable equation  

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), −∞ < 𝑡 < ∞        (11) 
This equation equivalent the set  of n scalar 

differentiable- equation 

�̇�(𝑡) =
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1(𝑡), … , 𝑥𝑛(𝑡), 𝑢1(𝑡),

… , 𝑢𝑝(𝑡))     (12) 

where 𝑖 = 1, 2, .   .  . , 𝑛.  The 𝑖th state variable is 

represented by 𝑥𝑖(𝑡) and  𝑢𝑗(𝑡)  denotes the 𝑗th input 

for 𝑗 = 1,2 , . . ., 𝑝,  is called dynamical system, 

where  𝑥(𝑡) ∈ 𝑅𝑛 is a state vector and 𝑢(𝑡) ∈ 𝑅𝑝 is 

control vector and 𝑡 ∈ [0, 𝑇] ⊆ 𝑅 is the time and then                           

𝑓 ∶ 𝑅 × 𝑅𝑛 × 𝑅𝑝  → 𝑅𝑛 

and  

𝑓 ∈ 𝐶1 (𝐷), 
  Where 

𝐷 ⊆ 𝑅 × 𝑅𝑛 × 𝑅𝑝 

 where 𝐷 is the domain of the function 𝑓. For ease of  

expression and manipulation it is convenient to 

represent the dynamical system equations in vector-

matrix from. Let us define the following vectors: 

𝑆𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟: 

𝑥(𝑡) = [

𝑥1(𝑡)

𝑥2(𝑡)
⋮

𝑥𝑛(𝑡)

] 

Input vector: 

𝑢(𝑡) = [

𝑢1(𝑡)

𝑢2(𝑡)
⋮

𝑢𝑝(𝑡)

] 

Output vector: 

𝑦(𝑡) = [

𝑦1(𝑡)

𝑦2(𝑡)
⋮

𝑦𝑞(𝑡)

] 

By using these vector, the n state equations of  

equation  (12)  can be written as  

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))    (13) 

where f denotes an  n × 1 column matrix that contains 

the functions 𝑓1 , 𝑓2, …  , 𝑓𝑛 as elements. Similarly, the 

q output functions in (9) is given by    

𝑦(𝑡) =  𝐶𝑥(𝑡)      (14)  
where 𝐶 denotes a 𝑞 ×  1 column matrix that 

contains functions  𝐶1 , 𝐶2 , … , 𝐶𝑞  as elements. 

Definition 𝟐. 𝟖: 
The dynamical controlled system 

�̇�(𝑡) =  𝑓(𝑡, 𝑥(𝑡),   𝑢(𝑡)) 
Is called free (unforced) dynamical system if   

𝑢(𝑡) 0 , ∀ 𝑡 ∈ [𝑡0 , 𝑡1] ⊆ 𝑅 

This system can be written as follows:- 

�̇�(𝑡) =  𝑓(𝑡, 𝑥(𝑡)) 
(15) Definition 𝟐. 𝟗: 
The dynamical forced system (2.13) 

�̇�(𝑡) =  𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 
is stationary if, we have       

𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) = 𝑓 (𝑥, 𝑢(𝑡))    (16) 

then, for all 𝑡 ≥ 0,  
�̇�(𝑡) =  𝑓(𝑥, 𝑢(𝑡))     (17) 

i.e., the function 𝑓 depend implicitly on time 𝑡  
through 𝑢 (𝑡). 
Definition 𝟐. 𝟏𝟎: 
The dynamical controlled  system   

�̇�(𝑡) =  𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 
is called autonomous dynamical system, if satisfies 

the following conditions: 

               1- free 

               2- stationary  

thus,  the system (13) is given by the form 

�̇�(𝑡) =  𝑓(𝑥) 
Definition 𝟐. 𝟏𝟏: 
The dynamical controlled system 

         �̇�(𝑡) =  𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)) 

is linear if 𝑓  is  linear function of  𝑥 and  𝑢. This 

system is given by the following equation 
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          �̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)     (18)  
Where  

𝐴(𝑡) = (
𝜕𝑓𝑖

𝜕𝑥𝑖
)𝑛×𝑛 =

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯  

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

       (19) 

 

 And 

𝐵(𝑡) = (
𝜕𝑓𝑖

𝜕𝑢𝑗
)𝑛×𝑝 =

[
 
 
 
 
𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑝

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
⋯  

𝜕𝑓𝑛

𝜕𝑢𝑝]
 
 
 
 

     (20) 

Where 𝑖 = 1, … , 𝑛, 𝑗 =  1, … , 𝑝  and  𝐴,   𝐵 

respectively are  𝑛 × 𝑛, 𝑛 × 𝑚 matrices depending 

on time 𝑡. Then, the system  (18) is called linear time 

varying (continuous)  controlled system.  

Definition 𝟐. 𝟏𝟐: 
The linear time varying dynamical controlled  system 

�̇�(𝑡) =  𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) 
Is called free (unforced) linear dynamical system if   

𝑢(𝑡) 0 , ∀ 𝑡 ∈ [𝑡0 , 𝑡1] ⊆ 𝑅 
This system can be written as follows:- 

�̇�(𝑡) =  𝐴(𝑡)𝑥(𝑡)    (21) 
Definition 𝟐. 𝟏𝟑: 
The linear time varying dynamical controlled system 

�̇�(𝑡) =  𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) 
is stationary if, we have 

𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) =  𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)           (22) 
then for all 𝑡 ≥ 0, we obtain 

�̇�(𝑡) =  𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)     (23) 
i.e., the function 𝑓 depend implicitly on time 𝑡  
through 𝑢(𝑡). 
Definition 𝟐. 𝟏𝟒: 
The linear time varying dynamical controlled system 

(18) is called autonomous linear dynamical system, 

if it is: 

               1- free 

               2- stationary  

Thus, the system (18) is given by  

�̇�(𝑡) =  𝐴𝑥(𝑡)     (24) 
Definition 𝟐. 𝟏𝟓: 
Consider linear dynamical controlled system with 

initial state and final state described by the following 

state space equations 

{

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑥(0) =  𝑥0                       

𝑥(𝑇) = 0                         

      (25) 

augmented with the output function 

𝑦(𝑡) =  𝐶𝑥(𝑡)   (26) 
Where 𝐶 is 𝑞 × 𝑛 matrix. The systems (25) − (26) 

are said to be observable, if for unknown initial state, 

there exists a finite 𝑡 ≥  0 such that the knowledge the 

input 𝑢(𝑡) and the output 𝑦(𝑡) over [0, 𝑇] suffices to 

determine uniquely, the initial state 𝑥(0).  
Otherwise the systems (25) − (26) are called un 

observable system.  

 

 

Definition 𝟐. 𝟏𝟔: 
The systems (25) − (26) are completely observable 

system, if for every initial state
 
 𝑥0 

, there exists  time 

 𝑡 ≥  0  such that, the knowledge of the input u(t) and 

the output y(t) suffices to determine uniquely, the 

initial state 𝑥0.  
Definition 𝟐. 𝟏𝟕: 
For linear dynamical systems (25) − (26), the 

observability matrix 𝑀(0, 𝑇) is defined by the 

following formula 

𝑀(0, 𝑇) =  ∫ 𝑒𝐴
∗(𝑇−𝜏)𝐶∗𝐶𝑒𝐴(𝑇−𝜏)

𝑇

0
     (27) 

Where 
 
𝑒𝐴(𝑇−𝜏) is 𝑛 × 𝑛 matrix and, 𝐶 is 𝑛 × 𝑚, 𝐶∗ is 

the conjugate  transpose of  𝐵  and  𝑒
𝐴∗(𝑇−𝜏)  is the 

conjugate  transpose of 𝑒
𝐴(𝑇−𝜏). 

Definition 𝟐. 𝟏𝟖: 
The matrix 𝑀(0, 𝑇) is called positive definite if  

< 𝑀(0, 𝑇)𝑥, 𝑥 > > 0, ∀ 𝑥 𝜖 𝑅𝑛 𝑥 ≠ 0     (28) 
and is called positive semi-definite if 

< 𝑀(0, 𝑇)𝑥, 𝑥 > ≥ 0, ∀ 𝑥 𝜖 𝑅𝑛   (29) 
 i.e., ∃ 𝑥 ≠ 0, such that   

< 𝑀(0, 𝑇)𝑥, 𝑥 > = 0 

𝟐. 𝟐. State transition matrix 

This sub-section related to recall some definition and 

characterization as in [5]. 
Definition 𝟐. 𝟏𝟗: 
The state transition matrix is defined as matrix that 

satisfied the  linear free dynamical system.    

�̇�(𝑡) = 𝐴𝑥(𝑡)    (30) 
If 𝛷(𝑡) be 𝑛 × 𝑛 matrix that represents the state 

transition matrix, then 

�̇�(𝑡) = 𝐴𝛷(𝑡)    (31) 
Let 𝑥(0) is the initial state at 𝑡 = 0.  Then 𝛷 (𝑡) also 

defined by the matrix equation 

𝑥(𝑡) = 𝛷 (𝑡)𝑥(0)    (32) 
Which is the solution of the free linear dynamical 

system (31) for
 
𝑡 ≥ 0. 

Remark 𝟐. 𝟐𝟎: 
To find state transition matrix, we use (Laplace 

transform approach) to find 𝛷 (𝑡), we take Laplace 

transform on both sides of system (30), we have  

𝑆𝑋(𝑠) − 𝑥0 = 𝐴𝑋 (𝑠) 
thus, we obtain 

𝑆𝑋(𝑠) − 𝐴𝑋 (𝑠) =  𝑥0 
and then 

𝑋(𝑠)[𝑆𝐼 − 𝐴] =  𝑥0 

therefore, we can get 

𝐿(𝑥(𝑠)) =  ((𝑆𝐼 − 𝐴) −1) 𝑥(0)  

Where assumed that matrix (𝑆𝐼 − 𝐴) is non-singular 

(That means 𝑑𝑒𝑡. (𝑆𝐼 − 𝐴)  ≠ 0). By taking the 

inverse of  Laplace transform on both sides of the 

equation 

𝐿−1𝐿(𝑥(𝑠)) =  𝐿−1((𝑆𝐼 − 𝐴) −1) 𝑥(0) 
we have,  

𝑥(𝑡) =  𝐿−1((𝑆𝐼 − 𝐴)−1) 𝑥(0), 𝑡 ≥ 0      (33) 
Comparing equation (32) with equation (33), the state 

transition matrix is defined by  

𝛷 (𝑡) =  𝐿−1((𝑆𝐼 − 𝐴)−1 = 𝑒𝐴𝑡    (34) 
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then, we have from eq. (33) and eq. (34), the 

solution of linear free dynamical system (30) given 

by the following formula [5]: 
𝑥(𝑡) = 𝛷 (𝑡)𝑥(0) =  𝑒𝐴𝑡  𝑥(0)     (35) 

𝟑. Mathematical Method 
In this section, we discuss the solution  method of  

linear control system and some mathematical 

approaches as in ref.s [9 − 10]. 
 𝟑. 𝟏. The method of solution   

Consider the system described by the state space  

equation  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)       (36) 
Augmented with output function  

𝑦(𝑡) =  𝐶𝑥(𝑡)      (37) 
 Where 𝐴, 𝐵 and 𝐶 are respectively 𝑛 × 𝑛 , 𝑛 × 𝑚 and 

𝑞 × 𝑛 constant matrix. The problem is to find the 

solution excited by initial state 𝑥(0) and the input 

𝑢(𝑡).  Thus, the solution hinges on the exponential 

function of 𝐴, we need    
𝑑

𝑑𝑡
 𝑒𝐴𝑡 = 𝐴 𝑒𝐴𝑡 = 𝑒𝐴𝑡𝐴 

To develop the solution of system (36), then, we 

multiply (36) by 𝑒−𝐴𝑡 , we have  

𝑒−𝐴𝑡  �̇� (𝑡) − 𝑒−𝐴𝑡𝐴𝑥 (𝑡) =  𝑒−𝐴𝑡  𝐵𝑢 (𝑡) 
this implies  

𝑑

𝑑𝑡
 (𝑒−𝐴𝑡    𝑥 (𝑡)) =  𝑒−𝐴𝑡   𝐵𝑢 (𝑡) 

By integration the above equation from 0  to  𝑡  yields 

𝑒−𝐴𝑡   𝑥 (𝑡) −  𝑥 (0) =  ∫ 𝑒𝐴𝜏
𝑡

0

 𝐵𝑢 (𝜏) 𝑑 𝜏 

 Because the inverse of 𝑒−𝐴𝑡  is  𝑒𝐴𝑡   and 𝑒0 = 𝐼, then, 

we have  

          𝑥 (𝑡) =  𝑒𝐴𝑡𝑥(0) + ∫ 𝑒𝐴(𝑇−𝜏)
𝑡

0
 𝐵𝑢 (𝜏) 𝑑 𝜏          

(38) 
Therefore,  𝑥(𝑡) in equation (38) is the solution of 

the system (36)  (see ref. [10]). 
Remark 𝟑. 𝟏: 
The systems (36) − (37) is completely observable if 

∀ 𝑥0  ≠  𝑥1  ∈ 𝑅
𝑛 

Initial states imply that, the output functions 
 

𝑦0(𝑡) ≠   𝑦1(𝑡) 
𝟑. 𝟐. Characterization of observable system  

The observability notion of the linear dynamical 

controlled system in ref.s [9, 10] can be developed in 

a new way  by the following result: 

 Theorem 𝟑. 𝟐: 
The linear dynamical system  

{

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑥(0) =  𝑥0                       

𝑥(𝑇) = 0                         

          (39) 

with output function 

𝑦(𝑡) =  𝐶𝑥(𝑡)         (40) 
is completely observable to zero over [0, 𝑇] …                             

(1) 
  The observability matrix 𝑀(0, 𝑇) is invertible …                   

 (2) 
 The observability matrix 𝑀(0, 𝑇) is positive 

definite …          (3)  

Now, we prove this theorem by the following way  

)3()1()2()3(   

for achieve the observability of cardiography model. 

Proof: 
  )2()3(   

If the observability matrix 𝑀(0, 𝑇) is positive 

definite, to prove that 𝑀(0, 𝑇), is invertible. Now, if  

𝑀(0, 𝑇) is positive definite, that means 

< 𝑀(0, 𝑇)𝑥0, 𝑥0 >> 0, ∀ 𝑥0 ≠ 0 

and  

< 𝑀(0, 𝑇)𝑥0, 𝑥0 >> 0, if  𝑥0 =  0 

Since the matrix 𝑀(0, 𝑇) is positive definite, then, the 

matrix 𝑀(0, 𝑇)  has no zeros eigenvalues, and if 

𝑀(0, 𝑇) has no zeros eigenvalues, that means, the 

determinant of 𝑀(0, 𝑇) ≠ 0, Therefore, 𝑀(0, 𝑇) is 

invertible [9]. 
Proof :  

)1()2(   

If 𝑀(0, 𝑇) is invertible, to prove that, the system (39) 
together with output function (40) 

{
 

 
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑥(0) =  𝑥(0)                  

𝑥(𝑇) = 0                         

 𝑦(𝑡) =  𝐶𝑥(𝑡)                 

      (41) 

is completely observable over [0, 𝑇]. We know that, 

the solution of the linear free dynamical system (39) 

�̇�(𝑡) = 𝐴𝑥(𝑡) 
is given by               

𝑥(𝑡) = 𝛷 (𝑡)𝑥0 = 𝑒
𝐴𝑡  𝑥0 

 and 

𝑦(𝑡) =  𝐶𝑥(𝑡) = 𝐶𝑒𝐴𝑡  𝑥0 

Now, we can calculate    

𝑀(0, 𝑇)𝑥0 = ∫ 𝑒𝐴
∗(𝑇−𝜏)𝐶∗𝐶𝑒𝐴(𝑇−𝜏)

𝑇

0

𝑥0𝑑𝜏 

and since, the observability matrix 𝑀(0, 𝑇) is 

invertible, then, we can evaluate the initial state by 

the following form 

𝑥0 = 𝑀(0, 𝑇)
−1∫ 𝑒𝐴

∗(𝑇−𝜏)𝐶∗𝐶𝑦(𝜏)
𝑇

0

𝑑𝜏 

and if, we choose 

𝑥0 ≠   𝑥1 

then, we have  

𝑦0(𝑡) ≠   𝑦1(𝑡) 
where the output functions 𝑦0(𝑡), 𝑦1(𝑡) are given by: 

          𝑦0(𝑡) = 𝐶𝑒
𝐴𝑡  𝑥0   

and  

          𝑦1(𝑡) = 𝐶𝑒
𝐴𝑡  𝑥1 

  
Then by remark (3.1), the linear dynamical  system 

(41) is completely observable over  [0, 𝑇]. 
Proof:  

)1()3(   

If the system (41) is completely observable over 

[0, 𝑇], to prove that 𝑀(0, 𝑇) is positive definite. We 

can calculate  

< 𝑀(0, 𝑇)𝑥0, 𝑥0  > = 

< ∫ 𝑒𝐴
∗(𝑇−𝜏)

𝑇

0

𝐶∗𝐶𝑒𝐴(𝑇−𝜏)𝑑𝜏 𝑥0, 𝑥0

> 
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= ∫ < 𝑒𝐴
∗(𝑇−𝜏)

𝑇

0

𝐶∗𝐶𝑒𝐴(𝑇−𝜏)𝑥0, 𝑥0 > 𝑑𝜏 

= ∫ <  𝐶𝑒𝐴(𝑇−𝜏)
𝑇

0

𝑥0, 𝐶𝑒
𝐴(𝑇−𝜏) 𝑥0 >  𝑑𝜏 

= ∫ < 𝑦0

𝑇

0

(𝜏), 𝑦0(𝜏) > 𝑑𝜏 

= ∫  
𝑇

0

 ‖𝑦0(𝜏)‖
2𝑑𝜏 ≥ 0 

            𝑀(0, 𝑇) is positive semi definite.  

Since the system (41) is completely observable over 

[0, 𝑇], then  

∀ 𝑥0  ≠  𝑥1  ∈ 𝑅
𝑛 , ∃ 𝑢 ∶ [0, 𝑇] → 𝑅𝑛 

such that 
 

𝑦0(𝑡) ≠   𝑦1(𝑡) 
That means

 
           ∃ 𝑥0  ≠ 0  implies 𝑦0(𝑡) ≠ 0,  

and hence  

< 𝑀(0, 𝑇)𝑥0, 𝑥0  >= ∫  
𝑇

0

 ‖𝑦0(𝜏)‖
2𝑑𝜏 > 0 

Finally, 𝑀(0, 𝑇) is positive definite ∎. 

 

The sufficient condition to characterize observable 

system is given by the following result: 

Theorem 𝟑. 𝟑:  
The linear controlled system (41) 

{
 

 
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑥(0) =  𝑥(0)                  

𝑥(𝑇) = 0                         

 𝑦(𝑡) =  𝐶𝑥(𝑡)                 

 

is completely observable over [0, 𝑇], if the  

𝑟𝑎𝑛𝑘 (𝐶∗, 𝐴∗𝐶∗, 𝐴∗
2
𝐶∗, … , 𝐴(𝑛−1)𝐶∗) =  𝑛 

Proof:  

If the rank of the following matrix 

(𝐶∗, 𝐴∗𝐶∗, 𝐴∗
2
𝐶∗, … , 𝐴(𝑛−1)𝐶∗) =  𝑛 , 

 to prove that, the system (41) is completely 

observable over [0, 𝑇]. Now , if the system (41) is 

not observable over [0, 𝑇]. That is means, the 

observability matrix 𝑀(0, 𝑇) is not positive definite.  

By using the previous theorem 3.2, and if we choose  

𝑥0  ≠ 0, then,  we have        

< 𝑀(0, 𝑇)𝑥0, 𝑥0 > =  ∫ ‖𝐶𝑒𝐴(𝑇−𝜏)𝑥0‖
2

𝑇

0

𝑑𝜏 = 0 

thus, put  𝑠 = 𝑇 − 𝜏, implies that  
𝐶𝑒𝐴(𝑠)𝑥0 = 0,   ∀ 𝑠 ∈ [0, 𝑇] 

By deriving the above equation multiple once, we 

have        

𝐶𝐴𝑒𝐴𝑠𝑥0 = 0,   ∀ 𝑠 ∈ [0, 𝑇] 
𝐶𝐴2 𝑒𝐴𝑠𝑥0 = 0,   ∀ 𝑠 ∈ [0, 𝑇] 

⋮ 
𝐶𝐴(𝑛−1) 𝑒𝐴𝑠𝑥0 = 0,   ∀ 𝑠 ∈ [0, 𝑇] 

Put  𝑠 = 0 , we have 

𝐶𝐼𝑛𝑥0 = 0  implies             𝑥0
∗𝐶∗ = 0 

by multiply both sides of above equation 𝐴, we obtain 

            𝐶𝐴𝑥0 = 0  implies     𝑥0
∗ 𝐴∗𝐶∗ = 0   

                 
                  

            𝐶𝐴(𝑛−1)𝑥0 = 0 implies     𝑥0
∗ 𝐴∗(𝑛−1)𝐶∗ = 0 

           𝑟𝑎𝑛𝑘 (𝐶∗, 𝐴∗𝐶∗, 𝐴∗
2
𝐶∗, … , 𝐴(𝑛−1)𝐶∗) =  0 

 This is (Contradiction), Because,  

             𝑟𝑎𝑛𝑘 (𝐶∗, 𝐴∗𝐶∗, 𝐴∗
2
𝐶∗, … , 𝐴(𝑛−1)𝐶∗) =  𝑛 

Therefore, the system (41) is completely observable 

over  [0, 𝑇] ∎. 

𝟒. Application to Cardiography Model 
In this section, we give a physical model as 

dynamical system  and by using state space analysis 

transform this model to linear control observable 

system. 

𝟒. 𝟏. The physical model 

The field of medicine that deals with study of heart is 

called cardiology as in ref. [13], the nature and effects 

of  vibrations of the heart as pumps blood through the 

circulatory system of  body are a great source of 

mathematical application as. An important aspect 

involves the recording of such vibrations known as 

cardiography model as in figure 2.  
 

 
Fig. 2: The first human ECG. 

 

The instruments that records such vibrations is called 

electrical cardiography (E.C.G) (figure 3) which is 

discovered by the scientist Willem Einthoven in 

1902.   
 

 
Fig. 3: Depicting W.  Einthoven recording his first 

ECG in 1902 by placing limbs in buckets of 

conducting solution. 
 

It translates the vibrations into electrical impulse 

which are then recorded (see the modern ECG in 

figure 4).  
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Fig. 4: Modern ECG with sino-vibration graph. 

 

It is interesting to transport the heart vibrations into 

mechanical vibrations instead of translating these 

vibrations into electrical impulse. This can be done in 

the following manner. Now, suppose that a person 

rests on horizontal table which has springs so that it 

can vibrate horizontally, then, due to the pumping of 

heart the table will undergo small vibrations, the 

frequency and magnitude of which will depend 

various parameter associated with the heart. Some 

important conclusions about the vibrations of heart 

can be drawn. Let 𝑦 denote the horizontal 

displacement of some specified points of the table (as 

example, on end) from fixed point location (such as a 

wall). Let M denote the combine mass of the person 

and the portion of table which is set into motion. 

If we assume that there is a dumping force 

proportional to an instantaneous velocity and 

restoring for proportional to the instantaneous 

displacement. Then, the differential equation 

describing the motion of the table is given by [13]:           

𝑀
𝑑2𝑦(𝑡)

𝑑𝑡2
+ 𝛽

𝑑𝑦(𝑡)

𝑑𝑡
+  𝛾𝑦(𝑡) = 𝐹(𝑡)     (42) 

Where 𝛽 and 𝛾  are constant of proportionality and 𝐹 

is the force the system due to the pumping equation 

of heart. Suppose that 𝑚 is the mass of blood pumped 

out of heart luring such vibrations and 𝑧 is the 

instantaneous center of mass of this e quantity of 

blood. Then, by Newton's low, we have  

           𝐹(𝑡) = 𝑚
𝑑2𝑧(𝑡)

𝑑𝑡2
     (43)  

since 𝐹(𝑡) is the force which control the blood, then 

𝐹(𝑡) =  𝑢(𝑡)  (44) 
thus, the dynamical system of the cardiography model 

becomes 

𝑀
𝑑2𝑦(𝑡)

𝑑𝑡2
+ 𝛽

𝑑𝑦(𝑡)

𝑑𝑡
+  𝛾𝑦(𝑡) = 𝑢(𝑡)  (45) 

𝟒. 𝟐. The mathematical approach  

We use state space analysis to describe the physical 

dynamical system given by the following system          
   

 𝑀�̈�(𝑡) + 𝛽�̇�(𝑡) +  𝛾𝑦(𝑡) = 𝑢(𝑡)        (46) 
The dynamical system (46) can be transform to the 

following state system given  by the form 

𝑦 =  𝑥1 

�̇� =  𝑥2 
By deriving the above equations implies that 

�̇�1 =  𝑥2 

�̇�2 = �̈� =  − 
𝛾

𝑀
 𝑥1 − 

𝛽

𝑀
 𝑥2 +  𝑢(𝑡)   (47) 

The dynamical system (4.4) given by matrix form as 

following  

 

�̇�(𝑡) = [
0 1
−𝛾

𝑀

−𝛽

𝑀

] [
𝑥1(𝑡)
𝑥2(𝑡)

] +  [
0
1
] 𝑢(𝑡)   (48) 

Augmented with output function 

𝑦(𝑡) ] =  [0 1]𝑥(𝑡)     (49) 
𝟒. 𝟑. The method 

We can use theorem 3.3 to prove that, the linear 

dynamical controlled systems (48) − (49) are 

completely observable over [0, 𝑇]. Now we have. 

[
�̇�1(𝑡)

�̇�2(𝑡)
] = [

0 1
−𝛾

𝑀

−𝛽

𝑀

] [
𝑥1(𝑡)

𝑥2(𝑡)
] + [

0
1
] 𝑢(𝑡) 

augmented with output function 

𝑦(𝑡) =  [0 1]𝑥(𝑡) 
we know that   

𝐴 = [
0 1
−𝛾

𝑀

−𝛽

𝑀

] 

and the conjugate transpose of 𝐴 is given by 

𝐴∗ = [
0

−𝛾

𝑀

1
−𝛽

𝑀

] 

thus, 

        𝐶 =  [0 1] 

and the conjugate transpose of 𝐶 is given by 

    

𝐶∗ = [
0
1
]
 

therefore, the matrix  

[𝐶∗ , 𝐴∗𝐶∗] =  [
0

−𝛾

𝑀

1
−𝛽

𝑀

] 

Since the determinant of ,   
[𝐶∗ , 𝐴∗𝐶∗] ≠ 0 

Then, we have  

rank [𝐶∗ , 𝐴∗𝐶∗] = 2 = 𝑛 [3]. 

Consequently, the system (48) together with the (49) 
is completely observable over [0, 𝑇]∎. 
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Conclusion 
We have been presented some definitions and 

characterizations related to control system analysis in 

finite dimensional . More precisely, the observability 

problem of electrocardiography model has been 

studied and anlysis. Then, the existence of sufficient 

conditions which described the observability notion 

in linear dynamical systems are discussed and proved. 

Thus, we show that this physical model is completely 

observable to zero over finite time interval 𝑡𝜖 [0, 𝑇]. 

Many problem still opened for the future work, one 

can study the possibility of  extending  these results to 

the case of distributed parameter systems analysis, 

where the dimensional is infinite as in ref.s [15-19].    
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 الملخص

منظومة فضاء الحالة  . وعلية سوف ننشأ(Electrocardiography problem) الكهربائية الهدف من البحث هو دراسة مسالة تخطيط القلب
 الخطية انظمة السيطرة تحليل كنموذج من النماذج الرياضية. علاوة على ذلك تم تقديم بعض التعاريف والنتائج التي توصف بعض المفاهيم في

وبشكل ادق، الشروط الكافية التي توصف مفهوم القابلية على المشاهدة في انظمة السيطرة الحركية الخطية قدمت  التي تتعلق بتلك المسالة.
,𝑡𝜖 [0نموذج من الأنظمة القابلة للمشاهدة وعلى فتره زمنية منتهية مقدارها  الكهربائية انها اخيرا، برهننا ان  مسالة تخطيط القلب ونوقشت.  𝑇]. 

 

 

 


