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Abstract 
In this pap, we investigate the distribution of zeros for the solution of linear Homogeneous Differential 

Equations (LHDE) in the semi-critical intervals ,for the boundary value problems. The method used in this paper 

is different from [1-3] in which the authors used geometric approach to distribute the zeros of the solutions of 

LHDE. We used an analytic approach. Moreover we stated the relation between semi-critical intervals for the 

boundary value problems . 
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1. Introduction 
The studies of the distribution of the solution zeros of 

the LHDE begun in 1960s. Geometric approaches, for 

LHDE of orders three and four, are commonly used 

in the literature since they depend on the set of  

fundamental solutions [1,2]. In [3] the authors 

considered LHDE of order N. However, their 

approach is very complicated and requires additional 

conditions. The authors in [3-9] proposed a different 

concept to prove the distribution of zeros in which 

they used the set of the normal fundamental solutions 

(NFS). Using NFS has the advantage of providing 

analytical methodology which resulted in important 

conclusions and easiness to prove them. This study,  

is an extension of [4-9], where the authors conducted 

their research paper on fifth order LHDE. In this 

paper we consider LHDE of sixth order with a 

boundary conditions of three points (m = 3). 

2. Definitions and Characteristics 

Consider the following boundary  value problem 

x(6) + ∑ gj

5

j=0

(x)x(j) = 0      (1) 

                                          

x(ti) = x́(ti) = ⋯ = x(pi)(ti) = 0    (2) 

where   α ≤ t1 < t2 < ⋯ < tm < ∞, m is the number 

of points [ti, i = 1, … , m] , pi is the number of 

conditions at the points ti, i = 1,2, … , m,   gj(x) are 

continuous on [∝, β)  

Problem (1) and (2) is called ≪( p1p2 … pm) −
problem ≫. 

When the point t1 is fixed, the family of non-trivial 

solution of the problem ≪ (p1p2 … pm) −
problem ≫ is denoted by Wp1p2…pm

(t, t1). 

 Definition 2-1 [5]: The interval [∝, β), (a < α <
β < ∞ ) is called semi-oscillatory, if any non-trivial 

solution for equation (1) has no more than five zeros 

[including multiplicity] in [∝, β). The largest semi-

oscillatory interval that begins at the point α is 

denoted by [α, r(α)). 

 Definition 2-2[6]: The interval [∝, γ) where 

≪ (p1p2 … pm) − problem ≫ has a unique solution 

is called semi-critical, and the largest semi- critical 

intervals that begins at the point α is denoted by 

[α, rp1p2…pm
(α)). 

In this research paper, we discuss non- trivial solution  

of boundary-value problem (1) and (2) in the semi- 

critical intervals, especially ≪ (231) − problem ≫ 

where the solution has zero of multiplicity 2 at t = t1, 

and a zero of multiplicity 3 at t = t2, and a zero of 

multiplicity 1 at t = t3, where α ≤ t1 < t2 <
r231(α) < t3. 

The first zero after  t = t2 is denoted by 

r231(α, t1, t2), it's clearly that  

r231(α) ≤ r231(α, t1, t2) and  r231(α) =
inf  r231(α, t1, t2).    (3) 

Generally, the first zero after t = tm−1 is denoted by  

rp1p2…pm
(α, t1, t2, … , tm−1)  for which 

rp1p2…pm
(α) = inf rp1p2…pm

(α, t1, t2, … , tm−1) (4) 

where p1 + p2 + ⋯ + pm = 6 . 

Lemma 2-1 [7]: The function 

rp1p2…pm
(α, t1, t2, … , tm−1) (where t1 is fixed ) is 

continuos from the right (the right limit exists ) at the 

points  t2, t3, … , tm−1 in the set Rm−1[α, ∞) . i.e. 

lim
t2→t2

0

t3→t3
0

⋮
tm−1→tm−1

0

rp1p2…pm
(α, t1, t2, … , tm−1)

= rp1p2…pm
(α, t1, t2

0, t3
0 … , tm−1

0 ). 

Lemma 2-2 [7]: The set of fundamental normal  

solution for equation (1)  (i.e. {uj(t, t1), j =

0,1, … , m − 1} ) with respect to t1 has the following 

forms 

uj
(i)(t, t1) = (t − t1)j−iψij(t, t1),    i, j = 0,1, … , m −

1.       (5) 

where 

ψij(t1, t1) = {
uj

(i)
(t1,t1)

(j−i)!
         j ≥ i

0                     j < i
               (6) 

3. Main Results  
In this section we present two theorems for the 

distribution of zeros for the solutions of LHDEs in 

the semi-critical intervals. 
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Theorem 3-1:In the interval [α, r231(α)), any non-

trivial solution (for the equation (1)) that has a zero at 

t1 of multiplicity five cannot have a simple zero  to 

the right of  t1, i.e.   r231(α) ≤ r51(α), when t2 → t1 . 

Proof: First of all we show that the family of non-

trivial solution for ≪ (231) − problem ≫ at the 

fixed point t1 contains at least one solution that 

becomes a non-trivial solution for ≪ (51) −
problem ≫  when t2 → t1. 

lim
t2→t1

W231 (t, t1) = W51(t, t1) 

From Vallee  Poisinee theorem, for each t1 ∈
[α, r(α)) ,there exists a semi-oscillatory interval 

[t1, r(t1)) [10]. Choose ε > 0, such that [t1, t1 + ε) ⊂
[t1, r(t1)). 

And let {𝑢0(𝑡, 𝑡1), 𝑢1(𝑡, 𝑡1), … , 𝑢5(𝑡, 𝑡1)} be a set of 

the normal fundamental solutions for (1) with respect 

to  t1 , i.e. 

uj
(i)(t1, t1) = {

0     , i ≠ j
1     ,        i = j

 

Thus, the family of non-trivial solution for the 

equation (1) can be written as: 

W(t, t1) = ∑ cjuj(t, t1)      (7)

5

j=p1

 

where cj  is an arbitrary constants. 

From the boundary condition for  ≪ (231) −
problem ≫ we get the following homogeneous 

system . 

∑ cjuj
(ki)

(ti, t1) = 0       (8)

5

j=p1

 

where  

ki = 0,1, … , pi − 1  ;   i = 2,3  ;  ∑ pi = 6

m

i=1

 

A necessary and sufficient condition for the system 

(8)  to have a non-trivial solution ( for unknown cj
,
s) 

is : 

D(t1, t2) = det. (𝑢𝑗
(𝑘𝑖)

(𝑡𝑖 , 𝑡1): 𝑗 = 2,3,4,5 ;    𝑘𝑖 =

0,1, … , 𝑝𝑖 − 1 ;   𝑖 = 2,3) = 0    

The rank of the matrix of system (8) is equal to 3 and 

it's different from zero. 

that is  

△ (t1, t2) = |

u3(t2, t1) u4(t2, t1) u5(t2, t1)

u3́(t2, t1) u4́(t2, t1) u5́(t2, t1)

u3́
́ (t2, t1) u4́

́ (t2, t1) u5́
́ (t2, t1)

| ≠ 0 

where α ≤ t1 < t2 < t1 + ε . 

In fact, if   △ (t1, t2) = 0,  then the homogeneous 

system has a non-trivial solution c̅3 ,c̅4  and c̅5   in 

[t1, t1 + ε).Thus,  the nontrivial solution for the 

equation (1): W(t, t1) = c̅3 u3(t, t1) + c̅4 u4(t, t1) +
c̅5 u5(t, t1) has six zeros in the  [t1, t1 + ε)  where 

[t1, t1 + ε) ⊂ [t1, r(t1)). Three of six zeros are at the 

point t1 and the other three zeros at the point t2, this 

contradicts the concept of  semi-oscillatory interval. 

In the system (8) ,the first three equation constitute a 

system of nonhomogeneous equation  

c3u3(t2, t1) + c4u4(t2, t1) + c5u5(t2, t1)
= −c2u2(t2, t1) 

c3u3́ (t2, t1) + c4u3́(t2, t1) + c5u3́(𝑡2, 𝑡1)
= −c2u2́(t2, t1) 

c3u3́́ (t2, t1) + c4u4́
́ (t2, t1) + c5u5́

́ (t2, t1)

= −c2u2́
́ (t2, t1) 

Using Grammar-method, we find the values of   

c3 , c4 and c5. Note  that c2 is a free parameter  

depends on t1 and t2 that is c2 = c2(t1, t2) then the 

general of non-trivial solution for  ≪ (231) −
problem ≫ depends on c2. i.e. 

W231(t, t1) = c2u2(t, t1) +
△3 (t1, t2)

△ (t1, t2)
u3(t, t1)

+
△4 (t1, t2)

△ (t1, t2)
u4(t, t1) +    

+
△5 (𝑡1, 𝑡2)

△ (𝑡1, 𝑡2)
𝑢5(𝑡, 𝑡1)      (9) 

                                                

where △i (t1, t2), i = 3,4,5 can be obtained from 

△ (t1, t2) replacing 

(−c2u2(t, t1) −c2ú2(t, t1) −c2ú́2(t, t1))T  by 

first, second and third columns respectively. 

 From the equations (5 ) and (9 ) we find 

W231(t, t1) = −c2 (−u2(t, t1)

+
1

(t2 − t1)
 
α(t1, t2)

δ(t1, t2)
u3(t, t1)

+
1

(t2 − t1)2
 
β(t1, t2)

δ(t1, t2)
u4(t, t1)

+
1

(t2 − t1)3
 
γ(t1, t2)

δ(t1, t2)
u5(t, t1)) 

where 

δ(t1, t2) = ψ03(t2, t1) |
ψ14(t2, t1) ψ15(t2, t1)

ψ24(t2, t1) ψ25(t2, t1)
| −

ψ13(t2, t1) |
ψ04(t2, t1) ψ05(t2, t1)

ψ24(t2, t1) ψ25(t2, t1)
| +  

+𝜓23(𝑡2, 𝑡1) |
𝜓04(𝑡2, 𝑡1) 𝜓05(𝑡2, 𝑡1)

𝜓14(𝑡2, 𝑡1) 𝜓15(𝑡2, 𝑡1)
|. 

α(t1, t2) = ψ02(t2, t1) |
ψ14(t2, t1) ψ15(t2, t1)

ψ24(t2, t1) ψ25(t2, t1)
| −

ψ12(t2, t1) |
ψ04(t2, t1) ψ05(t2, t1)

ψ24(t2, t1) ψ25(t2, t1)
| +  

+𝜓22(𝑡2, 𝑡1) |
𝜓04(𝑡2, 𝑡1) 𝜓05(𝑡2, 𝑡1)

𝜓14(𝑡2, 𝑡1) 𝜓15(𝑡2, 𝑡1)
|. 

β(t1, t2) = ψ03(t2, t1) |
ψ12(t2, t1) ψ15(t2, t1)

ψ22(t2, t1) ψ25(t2, t1)
| −

ψ13(t2, t1) |
ψ02(t2, t1) ψ05(t2, t1)

ψ22(t2, t1) ψ25(t2, t1)
| +  

+𝜓23(𝑡2, 𝑡1) |
𝜓02(𝑡2, 𝑡1) 𝜓05(𝑡2, 𝑡1)

𝜓12(𝑡2, 𝑡1) 𝜓15(𝑡2, 𝑡1)
|. 

γ(t1, t2) = ψ03(t2, t1) |
ψ14(t2, t1) ψ12(t2, t1)

ψ24(t2, t1) ψ22(t2, t1)
| −

ψ13(t2, t1) |
ψ04(t2, t1) ψ02(t2, t1)

ψ24(t2, t1) ψ22(t2, t1)
| +  

+𝜓23(𝑡2, 𝑡1) |
𝜓04(𝑡2, 𝑡1) 𝜓02(𝑡2, 𝑡1)

𝜓14(𝑡2, 𝑡1) 𝜓12(𝑡2, 𝑡1)
|. 
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Since c2  is an arbitrary constant, we assume that  

c2(t2, t1) = −(t2 − t1)3. By taking the limit of both 

sides when t2 → t1 we obtain ,  

lim
t2→t1

W231(t, t1) = c(t1)u5(t, t1)  (10) 

Where  c(t1) =
γ(t1,t1)

δ(t1,t1)
 

And from equation (6) we find  γ(t1, t1) =
1

144
  , δ(t1, t1) =

1

8640
   . By substituting in equation 

(10), we find  

lim
t2→t1

W231(t, t1) = 60u5(t, t1)    (11) 

Thus we proved that  the family of non-trivial 

solution  ≪ (231) − problem ≫ contains a solution 

that becomes  a solution for  ≪ (51) − problem ≫ 

when  t2 → t1. 

By the lemma (1) The function  r231(α, t1, t2) is  

continuos  from the right,  then we get the following 

inequality 

inf⏟
∝≤t1<t2<r231(∝)

r231(α, t1, t2)

≤ inf⏟
∝≤t1<r231(∝)

r231(α, t1)    (12) 

where  

lim
t2→t1

r231(α, t1, t2) = r231(α, t1) 

From equations (3) and (11), we find  

inf⏟
∝≤t1<t2<r231(∝)

r231(α, t1, t2) = r231(α)    (13) 

inf⏟
∝≤t1<r231(∝)

r231(α, t1) = r51(α)     (14) 

And from (12), (13) and (14),  we get   r231(α) ≤
r51(α) ∎ 

Theorem 3-2:In the interval [α, r321(α))  ,any non-

trivial solution (for the equation (1)) that has a zero at 

t1 of multiplicity five cannot have a simple zero  to 

the right of  t1 i.e.   r321(α) ≤ r51(α), when t2 → t1 . 

Proof: From Vallee  Poisinee theorem, for each 

t1 ∈ [α, r(α)), there exists a semi-oscillatory interval 

[t1, r(t1)) [10].  Choose ε > 0, such that [t1, t1 +
ε) ⊂ [t1, r(t1)). 
And let {u0(t, t1), u1(t, t1), … , u5(t, t1)} be a set of 

the  normal fundamental solutions for (1) with respect 

t1 . 

Thus, the family of non-trivial solution for the 

equation (1) can be written as : 

W(t, t1) = ∑ cjuj(t, t1)       (15)

5

j=p1

 

where cj  is an arbitrary constants. 

From the boundary condition for  ≪ (321) −
problem ≫ we get the following homogeneous 

system. 

∑ cjuj
(ki)

(ti, t1) = 0      (16)

5

j=p1

 

where  

ki = 0,1, … , pi − 1;   i = 2,3 ;  ∑ pi

m

I=1

= 6 

A necessary and sufficient condition for the system 

(16)  to have a non-trivial solution ( for unknown cj
,
s) 

is: 

D(t1, t2) = det. (𝑢𝑗
(𝑘𝑖)

(𝑡𝑖 , 𝑡1): 𝑗 = 3,4,5 ;    𝑘𝑖 =

0,1, … , 𝑝𝑖 − 1 ;   𝑖 = 2,3) = 0    

The rank of the matrix of system (16) is equal to 2 

and it's different from zero. 

That is  

△ (t1, t2) = |
𝑢4(𝑡2, 𝑡1) 𝑢5(𝑡2, 𝑡1)
�́�4(𝑡2, 𝑡1) �́�5(𝑡2, 𝑡1)

| ≠ 0 

where α ≤ t1 < t2 < t1 + ε. 

In fact, if   △ (t1, t2) = 0 then the homogeneous 

system  has a non-trivial solution c̅4  and c̅5   in 
[t1, t1 + ε). Thus, the nontrivial solution for the 

equation (1), W(t, t1) = c̅4 u4(t, t1) + c̅5 u5(t, t1)  has 

six zeros in the semi-oscillatory interval [t1, t1 + ε)  

where [t1, t1 + ε) ⊂ [t1, r(t1)) four of six zeros are at 

the point t1 and the other two zeros at the point t2, 

this contradicts the concept of  semi-oscillatory 

interval. 

In the system (16), the first two equations constitute a 

system of nonhomogeneous equation  

c4u4(t2, t1) + c5u5(t2, t1) = −c3u3(t2, t1) 

c4u3́(t2, t1) + c5u3́(𝑡2, 𝑡1) = −c3u3́(t2, t1) 

Using Grammar-method, we find the values of   

c4 and c5. Note  that c3 is a free parameter  depends 

on t1 and t2 that is c3 = c3(t1, t2) then the family of 

non-trivial solution for  ≪ (321) − problem ≫ 

depends on c3. i.e. 

W321(t, t1) = c3u3(t, t1) +
△4 (t1, t2)

△ (t1, t2)
u4(t, t1)

+
△5 (t1, t2)

△ (t1, t2)
u5(t, t1)         (17) 

where △i (t1, t2) , i = 4,5 can be obtained from  

△ (t1, t2) replacing (−c3u2(t, t1) −c2ú3(t, t1))T  

by first and second columns respectively. 

From the equations (5 ) and (17 ) we find 

W231(t, t1) =

−c3 (−u3(t, t1) +
1

t2−t1

α(t1,t2)

δ(t1,t2)
u4(t, t1) +

1

(t2−t1)2

β(t1,t2)

δ(t1,t2)
u4(t, t1))  

where 

δ(t1, t2) = ψ04(t2, t1)ψ15(t2, t1)
− ψ14(t2, t1)ψ05(t2, t1) 

α(t1, t2) = ψ03(t2, t1)ψ15(t2, t1)
− ψ13(t2, t1)ψ05(t2, t1) 

β(t1, t2) = ψ04(t2, t1)ψ13(t2, t1)
− ψ14(t2, t1)ψ03(t2, t1) 

Since c3  is an arbitrary constant, we assume that  

c3(t2, t1) = (t2 − t1)2. By taking the limit of both 

sides when t2 → t1 we obtain,  

lim
t2→t1

W321(t, t1) = c(t1)u5(t, t1)    (18) 

where c(t1) = −
β(t1,t1)

δ(t1,t1)
 .  
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And   from equation   (6) we   find  β(t1, t1) = −
1

144
 

and  δ(t1, t1) =
1

2880
  By substituting in equation (18), 

we can find  

lim
t2→t1

W321(t, t1) = 20u5(t, t1)      (19) 

Thus we proved that  the family of non-trivial 

solution  ≪ (321) − problem ≫ contains a solution 

that becomes  a solution for  ≪ (51) − problem ≫ 

when  t2 → t1 . 

By the lemma (1) The function  r321(α, t1, t2) is  

continuos  from the right, then we get the following 

inequality 

inf⏟
∝≤t1<t2<r321(∝)

r321(α, t1, t2)

≤ inf⏟
∝≤t1<r321(∝)

r321(α, t1)     (20) 

where  

lim
t2→t1

r321(α, t1, t2) = r321(α, t1) 

From equations (4) and (19), we find  

inf⏟
∝≤t1<t2<r321(∝)

r321(α, t1, t2) = r321(α)    (21) 

inf⏟
∝≤t1<r321(∝)

r321(α, t1) = r51(α)         (22) 

And from (20),(21)and (22), we get  r321(α) ≤
r51(α) ∎ 

Future Work: 

This study may be extended in two different ways, 

once by considering the case where r141(α) ≤ r51(α) 

and r411(α) ≤ r51(α) and by considering boundary 

conditions with higher number of points. 
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 توزيع اصفار الحلول للمعادلات التفاضلية الخطية المتجانسة من الرتبة السادسة باستخدام 

 الفترات دون الحرجة
 وفاء محي الدين طه،  كاظمعباس حسين 

 ، كركوك ، العراق جامعة كركوك،  كلية التربية للعلوم الصرفة،  قسم الرياضيات

 الملخص
الطريقة في هذا البحث درسنا  توزيع الاصفار لحلول المعادلات التفاضلية الخطية  المتجانسة في الفترات شبه الحرجة لمسائل القيم  الحدودية . 

جانسة. والذي استخدم المؤلفون النهج الهندسي لتوزيع اصفار الحلول للمعادلات التفاضلية الخطية المت ]3-1[المتبعة في هذا البحث يختلف عن 
ة بين الفترات اما نحن فقد استخدمنا المنهج التحليلي لتوزيع اصفار الحلول للمعادلات التفاضلية من الرتبة السادسة. بالإضافة على ذلك  بينا العلاق

 شبه الحرجة لمسائل القيم الحدودية.  
 


