Characterization of Atmospheric Electrical Discharge in Pin-water Configuration at Different NaCl Concentrations
DOI:
https://doi.org/10.25130/tjps.v29i2.1514Keywords:
Electron Temperature; plasma parameters; discharge-liquid, interaction; NaCl; distilled Water;Abstract
The interaction between a pin-plate and plasma are representing an interest subject in plasma technology and applications. In this research, the influence of added NaCl to distilled water on the discharge characteristics that formed in the gap between pin-water surfaces was investigated in more details. Their electrical and optical characteristics serve as identifiers. It's found that all optical emissions intensity peaks as a results that detected are decreased with increasing of NaCl concentrations (300,400, and 500 mg). As well as, the emission intensity of neutral emission peaks are much higher than that of the ionic emission peaks. The addition of NaCl changes the liquid accessibility, which alters the kinetics of the discharge that forms in the pin-water surface gap. Also, its observed that the NaCl concentrations affected on the I-V characteristics. The data detected that the plasma frequency ((377.1176 - 279.1951)*1011 rad/sec), electron number density ((4.4519 – 2.4401)*1017 cm-3) and electron temperature (2.1537 – 1.663 eV) decreased with increases of NaCl concentrations except the Debye length ((1.6342 – 1.93989)*10-6 cm) shown a different behavior with increase of NaCl concentrations.
Downloads
Published
How to Cite
License
Copyright (c) 2024 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons Attribution 4.0 International License.
Tikrit Journal of Pure Science is licensed under the Creative Commons Attribution 4.0 International License, which allows users to copy, create extracts, abstracts, and new works from the article, alter and revise the article, and make commercial use of the article (including reuse and/or resale of the article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made, and the licensor is not represented as endorsing the use made of the work. The authors hold the copyright for their published work on the Tikrit J. Pure Sci. website, while Tikrit J. Pure Sci. is responsible for appreciate citation of their work, which is released under CC-BY-4.0, enabling the unrestricted use, distribution, and reproduction of an article in any medium, provided that the original work is properly cited.