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ABSTRACT 

The aim of this paper is to present the concepts of 𝑏𝑖𝑖-supra 

continuous function, 𝑏𝑖𝑖-semi supra continuous function, 𝑏𝑖𝑖-regular 

open set and 𝑏𝑖𝑖-regular semi supra open set in 𝑏𝑖𝑖-supra topological 

space. We studied relations between these functions and check up from 

some of its characteristics. 

 

 

1. Introduction 
In 1963 Kelly [1] presented the concept of bi - 

topological space which was called a set “equipped 

with two topologies a bi - topological space and is 

denoted by (𝔛, S𝔍, P𝔍 ) where 𝔍1, 𝔍2 are two 

topologies defined on 𝔛. In 1983 Mashhoure, M. S. 

Allam. A. A. Mohamoud F.S. and Khedr, F.H.[3] 

presented the supra topological space”. “In 2012 

Jamunarani, R. and Jeyanthi, P.,”[8] present the 

“Regular sets in generalized topological spaces. New 

concepts after we introduced the new definitions 

called 𝑏𝑖𝑖-supra topological spaces on the topological 

space (𝔛, 𝔍) and comparable between 𝑏𝑖𝑖-supra 

topological space which is induced from bi-

topological spaces (𝔛, 𝔍𝑖, 𝔍𝑗) where i,j ∈ {1,2} such 

that i ≠ j and our new definitions 𝑏𝑖𝑖-supra 

topological space.  

2. Bi-Supra Topological Space 
Definition 2.1:  

“Let 𝔛 be a non-empty set. Let S𝔍 is the set of all 

semi opn subsets of 𝔛 (for short S(𝔛) [6] , and Let P𝔍 

be the set of all pre-open subsets of 𝔛 (for short 

Po(𝔛)) [3]. 

then we say about (𝔛, S𝔍, P𝔍) is a bi-supra 

topological space. where each of (𝔛, S𝔍) and (𝔛, P𝔍) 

“are supra topological spaces”.” 

Definition 2.2 [3]: 

 A subfamily 𝔚 of a family of all subset of non 

empty set 𝔛 “is said to be a supra  

topology on 𝔛 if : 

1.,𝜑”∈ 𝔍 . 

2. If 𝔎i ∈ 𝔚 , ∀ i ∈ Ι ⟹ ⋃ 𝔎i ∈ 𝔚 , where Ι is any 

index set. (𝔛, 𝔚) its “called a supra topological 

spaces. The elements of 𝔚 are called supra opn sets 

in (𝔛, 𝔚) and the complement of a supra opn sets is 

called a supra closed sets. 

Definition 2.3: 

A subset 𝔎 of a supra topological space (𝔛 , 𝔚) be 

called: 

1. semi supra open set if  𝔎 ⊆ 𝑐𝑙𝔚(𝑖𝑛𝑡𝔚(𝔎)),“the 

complement of semi supra opn set is said to be semi 

supra” closed set [5]. 

2. pre supra open set if 𝔎 ⊆ 𝑖𝑛𝑡𝔚(𝑐𝑙𝔚(𝔎)), the 

complement of  pre supra open set is said to be pre 

supra”closed set [1]. 
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3. ℵ-supra open set if 𝔎 ⊆ 𝑖𝑛𝑡𝔚(𝑐𝑙𝔚(𝑖𝑛𝑡𝔚(𝔎))),”the 

complement of ℵ-supra open set is said to be”ℵ-

“supra” closed set. [2] 

4. 𝔓 -supra open if 𝔎 ⊆ (𝑐𝑙𝔚(𝑖𝑛𝑡𝔚(𝑐𝑙𝔚(𝔎)), the 

complement”of 𝔓 -supra open set is said to be 𝔓 –

“supra closed” set. [4] 

5. regular supra open if 𝔎 = 𝑖𝑛𝑡𝔚(𝑐𝑙𝔚(𝔎)), the 

complement of regular supra open set is said to be 

regular supra closed set [7]. 

3. Regular Semi Supra Open in Bi-“Supra 

Topological Space 
Definition 3.1: 

Let” (𝔛,So(𝔛), Po(𝔛)) be a 𝑏𝑖𝑖-“supra topological 

space, a subset” 𝔎 of 𝔛 is regular semi supra open set 

if 𝔎 = 𝑖𝑛𝑡𝑠𝔚(𝑐𝑙𝑝𝔚(𝔎)) and “denoted by” ℛ𝑆𝑂(𝔛). 

Now we introduce some remarks which are 

needed in our work 

Remark 3.2: 

1. Finite union of 𝑏𝑖𝑖 − regular “supra open sets” is 

not necessary to be a 𝑏𝑖𝑖 −regular supra open sets. 

2. Finite intersection”of 𝑏𝑖𝑖-regular supra open sets 

is not necessary to be a 𝑏𝑖𝑖 −regular supra opn sets.  

This will be shown by the example: 

“Let 𝔛 = { 1, 2 ,3 ,4 } 

 𝔚 = 

{𝜑, 𝔛,{1},{2},{4},{1,2},{1,3,4},{1,2,4},{1,2,3},{1,,

4},{2,4}} 

 𝔚𝑐= 

{𝜑, 𝔛,{2,3,4},{1,3,4},{3,4},{2},{3},{4},{1,2,3},{2,3

},{1,3}} 

𝑏𝑖𝑖-supra open = 

{𝜑, 𝔛,{1},{3},{1,2},{2,3},{3,4},{1,2,3},{1,3,4},{1,2

,4},{2,3,4}} 

(𝑏𝑖𝑖 −
supra)𝑐=”{𝜑, 𝔛,{2,3,4},{1,2,4},{1,2},{1,4},{1,2},{4

},{3},{2},{1}} 

𝑏𝑖𝑖-Regular supra open = 

{ 𝜑, 𝔛,{1},{3},{1,2,4},{2,3,4}}  

Note that{1},{3} are 𝑏𝑖𝑖-regular supra open but {1} 

⋃ {3} = {1,3} is not 𝑏𝑖𝑖-regular supra open   

And so {2,3,4},{1,2,4} are 𝑏𝑖𝑖-regular supra but 

{2,3,4} ⋂{1,2,4}={2,4} is not 𝑏𝑖𝑖-regular supra open. 

Remark 3.3: 

1. A finite union of ℛ𝑆𝑂(𝔛) is not necessary to be 

ℛ𝑆𝑂(𝔛) . 

2. A finite intersection of ℛ𝑆𝑂(𝔛) is not necessary to 

be ℛ𝑆𝑂(𝔛) open sets 

“It will be shown in the following example: 

Let 𝔛 ={1,2,3,4} 

𝔚 ={𝜑, 𝔛,{1},{2,3},{1,2,3},{1,3,4},{3,4}} 

𝔚𝑐 = { 𝜑, 𝔛,{2,3,4},{1,4},{4},{2},{1,2}} 

So(𝔛) =  

{𝜑, 𝔛,{1},{2,3},{3,4},{1,2,3}{1,3,4},{2,3,4}} 

Po(𝔛) =  

{𝜑, 𝔛,{1},{3},{1,3},{2,3},{3,4},{1,2,3},{1,2,4},{1,3

,4}} 

𝑏𝑖𝑖-supra =  

{𝜑, 𝔛,{1},{2,3},{3,4},{1,2,3}{1,3,4},{2,3,4},{3},{1,

3},{1,2,4}} 

(𝑏𝑖𝑖 − supra)𝑐= 

{𝜑, 𝔛,{2,3,4},{1,4},{1,2},{4},{2},{1},{1,2,4},{2,4},

{3}} 

𝑏𝑖𝑖-So(𝔛) =  

{𝜑, 𝔛,{1},{3},{1,2},{1,3},{2,3},{3,4},{1,2,3},{1,2,4

},{1,3,4},{2,3,4}} 

𝑏𝑖𝑖-Po(𝔛) =  

{𝜑, 𝔛,{1},{3},{1,3},{2,3},{3,4},{1,2,3},{1,2,4},{1,3

,4},{2,3,4}} 

(𝑏𝑖𝑖 − Po(𝔛))𝑐 =  

{ 𝜑, 𝔛,{2,3,4},{1,2,4},{2,4},{1,4},{1,2},{4},{3},{2},

{1}} 

𝑏𝑖𝑖 − ℛ𝑆𝑂(𝔛) =  

{ 𝜑, 𝔛,{1},{3},{1,2},{1,2,4},{2,3,4}} 

we note {2,3,4} and {1,2,4} are 𝑏𝑖𝑖 − ℛ𝑆𝑂(𝔛) but 

{2,4} is not belong to 𝑏𝑖𝑖 − ℛ𝑆𝑂(𝔛). As that respect 

to the union we find {1,2} and {3} belong to 𝑏𝑖𝑖 − 

ℛ𝑆𝑂(𝔛), but {1,2,3} is not belong to 𝑏𝑖𝑖 − ℛ𝑆𝑂(𝔛) . 

Definition 3.4: 

A subset 𝔎 of a space (𝔛,So(𝔛), P(𝔛)) is said to be  

1. ℵ-So(𝔛)-supra open if 𝔎 ⊆ 𝑖𝑛𝑡𝓈𝔚(𝑐𝑙𝓈𝔚 

(𝑖𝑛𝑡𝓈𝔚(𝔎)). 
2. 𝔓- So(𝔛)-supra open if 𝔎 ⊆ 𝑐𝑙𝓈𝔚(𝑖𝑛𝑡𝓈𝔚(𝑐𝑙𝓈𝔚(𝔎))). 

Lemma 3.5 

Every ℛSO(𝔛) and 𝔓-So(𝔛)-supra open and ℵ-So(𝔛) 

are independent. 

Proof  

Directly from definition. 

Definition 3.6:” 

A subset 𝒮 of a 𝑏𝑖𝑖- supra topological space”is called 

𝑏𝑖𝑖-supra clopen set if it is “both 𝑏𝑖𝑖-supra open and 

𝑏𝑖𝑖-“supra closed set in (𝔛,So(𝔛), Po(𝔛)). 

Corollary 3.7: 

Let 𝔎 be a 𝑏𝑖𝑖- regular supra “clopen” set. Suppose 

that ℱ is a 𝑏𝑖𝑖-supra” closed set. Then 𝔎 ⋂ ℱ is a 𝑏𝑖𝑖-

regular semi supra closed sets. 

Proof: 

We have the 𝔎 ⋂ ℱ be supra closed” in. Hence 𝑐𝑙𝔚-

(𝔎 ⋂ ℱ) = 𝔎 ⋂ ℱ in 𝔎 . Let 𝔎 ⋂ ℱ ⊂ 𝒰, where 𝒰 is 

regular supra open in 𝔎. Hence 𝔎 ⋂ ℱ is a regular 

semi supra closed set in the regular supra closed. 

Apply Theorem 𝔅 ⊂ 𝔎 ⊂ 𝔛.  

Theorem 3.8:  

suppose that 𝔅 ⊂ 𝔎 ⊂ 𝔛 , 𝔅 is a 𝑏𝑖𝑖-regular semi 

supra closed set relative to 𝔎 and that 𝔎 is a 𝑏𝑖𝑖-

regular supra clopen subset of 𝔛. Then 𝔅 is 𝑏𝑖𝑖-

regular semi supra closed relative to. 

Proof 

Let 𝔅 ⊂ 𝒰 and let 𝒰 be 𝑏𝑖𝑖-regular supra open. We 

have 𝔅 ⊂ (𝔎 ⋂ 𝒰). But 𝔅 is a 

𝑏𝑖𝑖-regular supra closed set relative to 𝔎. Hence 

𝑏𝑖𝑖 − 𝑐𝑙𝔎(𝔅) ⊂ (𝔎 ⋂ 𝒰) …1, 

Note that 𝔎 ⋂ 𝒰 is regular open in 𝔎. But 𝑏𝑖𝑖 −
𝑐𝑙𝔎(𝔅) = 𝑏𝑖𝑖-𝑐𝑙𝔚(𝔅) ⋂ 𝔎 .…2, 

From (1) and (2) it follows that 

(𝔎 ⋂ 𝑏𝑖𝑖-𝑐𝑙𝔚(𝔅)) ⊂ (𝔎 ⋂ 𝒰). Consequently 𝔎 ⋂ 𝑏𝑖𝑖-

𝑐𝑙𝔚(𝔅) ⊂ 𝒰. 

Hence 𝔎 ⋂ (𝑏𝑖𝑖-𝑐𝑙𝔚(𝔅) ⋃ ((𝑏𝑖𝑖 − 𝑐𝑙𝔚 (𝔅))𝑐 ⊂ (𝒰 

⋃ (𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅))𝑐). 
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That is (𝔎 ⋂ 𝔛) ⊂ (𝒰 ⋃ (𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅))𝑐)  

so 𝔎 ⊂ (𝒰 ⋃ (𝑏𝑖𝑖−𝑐𝑙𝔚(𝔅))𝑐) = G .. (3) 

But then G be a “supra open set. since 𝔎 be a 𝑏𝑖𝑖-

regular-supra closed in 𝔛 , 

from (3) we have 

(𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔎))𝑐 ⊂ (𝒰 ⋃ (𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅))𝑐) = G …(4) 

But 𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅) ⊂ 𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔎)  …(5)  

From (4) and (5) we have(cl 𝔅) ⊂ (𝒰 ⋃  (𝑏𝑖𝑖 −
𝑐𝑙𝔚(𝔅))𝑐) . 

Hence 𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅) ⊂ 𝒰 because 𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅)  ⋂ 

(𝑏𝑖𝑖 − 𝑐𝑙𝔚(𝔅))𝑐 =  . 

This implies that 𝔅 is regular semi supra closed 

relative to  . 

lemma 3.9: 

If 𝔎 is 𝑏𝑖𝑖-regular open and 𝑏𝑖𝑖-regular semi closed 

then 𝔎 is 𝑏𝑖𝑖-semi clopen. 

4. Continuity in 𝒃𝒊𝒊-Supra Topological Space 

Definition 4.1 

A function  

𝑓: (𝔛, 𝑆𝑜(𝔛), 𝑃𝑜(𝔛))  →  (𝒴, 𝑆𝑜(𝒴), 𝑃𝑜(𝒴))is called: 

1. 𝑏𝑖𝑖-Semi supra continuous function if the “inverse 

image for” any semi-“supra open” set in 𝒴 is semi-

“supra open set” in 𝔛. 

2. 𝑏𝑖𝑖-“Regular” supra “continuous function if the 

“inverse image for any” regular - supra open set in 𝒴 

is regular-“supra open set” in 𝔛. 

3. 𝑏𝑖𝑖-regular semi supra-continuous function if the 

inverese image for any regular semi –“supra” open 

set in 𝒴 is regular semi-“supra open set” in 𝔛. 

Theorem 4.2:   

Let 𝑓: (𝔛, 𝑆𝑜(𝔛), 𝑃𝑜(𝔛))  →  (𝒴, 𝑆𝑜(𝒴), 𝑃𝑜(𝒴)), be 

a 𝑏𝑖𝑖-supra “function then the following are 

equivalents:  

1. 𝑓 be a 𝑏𝑖𝑖-ℛSo(𝔛) “supra continuous.” 

2. inverse image for every”𝑏𝑖𝑖-regular supra open 

subset”in 𝒴 is 𝑏𝑖𝑖-regular semi supra open”in  . 

3. inverese image of every 𝑏𝑖𝑖-regular supra closed 

subset in 𝒴 be a 𝑏𝑖𝑖-regular semi supra “closed” in 𝒴  

proof  

suppose 1) to prove 2) 

since 𝑓 is a 𝑏𝑖𝑖- ℛSo(𝔛) supra continuous 

then inverese image for every 𝑏𝑖𝑖-regular supra opn 

subset in 𝒴 be 𝑏𝑖𝑖-regular   

semi supra opn in 𝒴 . 

Thus, the condition is fulfilled. 

suppose 2) to prove 3) 

if we take the complement to the two condition we 

get   

the inverese image for every 𝑏𝑖𝑖-regular supra closed” 

subset of 𝒴 “be a” 𝑏𝑖𝑖-      

regular semi supra closed of 𝒴 . 

It is the three condition . 

suppose 3) to prove 1) 

let 𝒢 be a 𝑏𝑖𝑖-regular supra closed subset of 𝒴  

∴ 𝒢𝑐 be a 𝑏𝑖𝑖-regular supra open subset of 𝒴 

∵ 𝒢 be a 𝑏𝑖𝑖-regular semi supra closed subset of 𝔛  

∴ 𝒢𝑐 be a 𝑏𝑖𝑖-regular semi supra open subset of 𝔛 . 

Thus, the first condition is fulfilled. 

Remark 4.3:  

Every 𝑏𝑖𝑖-regular supra continuous function is a 𝑏𝑖𝑖-

supra regular semi continuous function but the 

converse is not true. 

Proof:  

Let 𝑓:(𝔛,So(𝔛), Po(𝔛)) → (𝒴, So(𝒴), Po(𝒴)) be a 

𝑏𝑖𝑖-regular supra continuous function and 𝔎 is regular 

supra“open set in 𝒴”.  

Then there exist 𝔅 in 𝔛 s.t 𝑓(𝔅) = 𝔎 . 

∵ 𝑓 is 𝑏𝑖𝑖-regular semi supra continuous 

∴ 𝑓(𝔅) = 𝔎 and 𝑓 −1(𝔎) =  . 

For that 𝑓−1(𝔎) be a“regular supra open set in 𝔛. 

Hence “supra” regular semi open set in 𝔛. Hence 𝑓 is 

𝑏𝑖𝑖-regular semi supra continuous function. 

The converse for the previous theory is an incorrect, 

this will be shown by example.  

Example 4.4: 

“Let  𝔛 ={1,2,3} 

𝔚 = {𝜑, 𝔛, {1},{2},{1,2},{1,3},{2,3}} 

𝒴 ={𝔞, 𝔟, 𝔠} 

𝔚 = {𝜑, 𝒴,{a},{𝑏},{a ,b},{a, c},{b ,c}} 

𝑓(1) = a, 𝑓(2) = b  , 𝑓(3) = c . 

We find {a, b} is 𝑏𝑖𝑖-regular semi supra” continuouss 

function but not”𝑏𝑖𝑖-regular “supra continuous 

function. 
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حول المجموعات الشبه الفوقية المفتوحة المنتظمة والدوال الشبه الفوقية المستمرة في الفضاءات 
 التبولوجية الفوقية

 طه حميد جاسم ، مروة فتحي احمد
 الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراققسم الرياضيات ، كلية علوم 

 

 الملخص

مجموعتة المفتوحتة الغرض من هذا البحث هو تقديم المفاهيم .الدالة المستمرة الفوقية و الدالة المستتمرة البتبا الفوقيتة والمجموعتة المفتوحتة الم تامتة وال
 لها.العلاقات بين هذه الدوال قد درست وتحري ا بعض الخواص  𝒾ببا الفوقية الم تامة في فضاء ث ائي التبولوجي الفوقي من ال مط 

 
 


