TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

On Regular Semi Supra Open set and Regular Semi Supra Continuity

Marwa Fathi Ahmed, Taha H. Jasim

Department of Mathematics, Computer Science and Mathematics, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v27i1.90

ARTICLE INFO.

Article history:

-Received: 2/9/2021 -Accepted: 7/11/2021 -Available online: //2022

Keywords: bi^i -supra topological space, bi^i -supra open set, bi^i -

regular supra opn set, bi^{i} -regular semi supra opn set, bi^{i} -semi continuity and bi^{i} -regular semi continuity

Corresponding Author:

Name: Marwa Fathi Ahmed E-mail:

marwaahned557@gmail.com

tahahameed@tu.edu.iq

Tel:

1. Introduction

In 1963 Kelly [1] presented the concept of bi topological space which was called a set "equipped with two topologies a bi - topological space and is denoted by $(\mathfrak{X}, S\mathfrak{J}, P\mathfrak{J})$ where $\mathfrak{J}_1, \mathfrak{J}_2$ are two topologies defined on X. In 1983 Mashhoure, M. S. Allam. A. A. Mohamoud F.S. and Khedr, F.H.[3] presented the supra topological space. In 2012 Jamunarani, R. and Jeyanthi, P., [8] present the Regular sets in generalized topological spaces. New concepts after we introduced the new definitions called bi^i -supra topological spaces on the topological space $(\mathfrak{X}, \mathfrak{J})$ and comparable between bi^i -supra topological space which is induced from bitopological spaces $(\mathfrak{X}, \mathfrak{J}_i, \mathfrak{J}_i)$ where $i, j \in \{1, 2\}$ such that i \neq j and our new definitions bi^{i} -supra topological space.

2. Bi-Supra Topological Space

Definition 2.1:

Let \mathfrak{X} be a non-empty set. Let $S\mathfrak{J}$ is the set of all semi opn subsets of \mathfrak{X} (for short $S(\mathfrak{X})$ [6], and Let $P\mathfrak{J}$ be the set of all pre-open subsets of \mathfrak{X} (for short $Po(\mathfrak{X})$) [3].

ABSTRACT

he aim of this paper is to present the concepts of bi^i -supra continuous function, bi^i -semi supra continuous function, bi^i -regular open set and bi^i -regular semi supra open set in bi^i -supra topological space. We studied relations between these functions and check up from some of its characteristics.

then we say about $(\mathfrak{X}, S\mathfrak{J}, P\mathfrak{J})$ is a bi-supra topological space. where each of $(\mathfrak{X}, S\mathfrak{J})$ and $(\mathfrak{X}, P\mathfrak{J})$ are supra topological spaces.

Definition 2.2 [3]:

A subfamily $\mathfrak W$ of a family of all subset of non empty set $\mathfrak X$ is said to be a supra

topology on $\mathfrak X$ if :

 $1., \varphi \in \mathfrak{J}$.

2. If $\mathfrak{K}_i \in \mathfrak{W}$, $\forall i \in I \Longrightarrow \bigcup \mathfrak{K}_i \in \mathfrak{W}$, where I is any index set. $(\mathfrak{X}, \mathfrak{W})$ its called a supra topological spaces. The elements of \mathfrak{W} are called supra opn sets in $(\mathfrak{X}, \mathfrak{W})$ and the complement of a supra opn sets is called a supra closed sets.

Definition 2.3:

A subset $\mathfrak K$ of a supra topological space $(\mathfrak X\;,\mathfrak W)$ be called:

1. semi supra open set if $\mathfrak{K} \subseteq cl_{\mathfrak{W}}(int_{\mathfrak{W}}(\mathfrak{K}))$, the complement of semi supra opn set is said to be semi supra closed set [5].

2. pre supra open set if $\mathfrak{K} \subseteq int_{\mathfrak{M}}(cl_{\mathfrak{M}}(\mathfrak{K}))$, the complement of pre supra open set is said to be pre supra closed set [1].

3. N-supra open set if $\mathfrak{K} \subseteq int_{\mathfrak{W}}(cl_{\mathfrak{W}}(int_{\mathfrak{W}}(\mathfrak{K})))$, the complement of N-supra open set is said to be N-supra closed set. [2]

4. \mathfrak{P} -supra open if $\mathfrak{K} \subseteq (cl_{\mathfrak{M}}(int_{\mathfrak{M}}(cl_{\mathfrak{M}}(\mathfrak{K}))))$, the complement of \mathfrak{P} -supra open set is said to be \mathfrak{P} - supra closed set. [4]

5. regular supra open if $\mathfrak{K} = int_{\mathfrak{W}}(cl_{\mathfrak{W}}(\mathfrak{K}))$, the complement of regular supra open set is said to be regular supra closed set [7].

3. Regular Semi Supra Open in Bi- Supra Topological Space

Definition 3.1:

Let $(\mathfrak{X}, So(\mathfrak{X}), Po(\mathfrak{X}))$ be a bi^i - supra topological space, a subset \mathfrak{K} of \mathfrak{X} is regular semi supra open set if $\mathfrak{K} = int_{s\mathfrak{M}}(cl_{p\mathfrak{M}}(\mathfrak{K}))$ and denoted by $\mathcal{RSO}(\mathfrak{X})$.

Now we introduce some remarks which are needed in our work

Remark 3.2:

1. Finite union of bi^i – regular supra open sets is not necessary to be a bi^i –regular supra open sets.

2. Finite intersection of bi^i -regular supra open sets is not necessary to be a bi^i –regular supra opn sets. This will be shown by the example:

Let $\mathfrak{X} = \{ 1, 2, 3, 4 \}$

M

$$\{\varphi, \mathfrak{X}, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,3,4\}, \{1,2,4\}, \{1,2,3\}, \{1,, 4\}, \{2,4\}\}$$

 $\mathfrak{W}^{c}=$

 $\{\varphi, \mathfrak{X}, \{2,3,4\}, \{1,3,4\}, \{3,4\}, \{2\}, \{3\}, \{4\}, \{1,2,3\}, \{2,3\}, \{1,3\}\}$

biⁱ-supra open =

 $\{ \varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{1,2,3,4\}, \{2,3,4\} \}$

(biⁱ –

supra)^{*c*} = { φ , \mathfrak{X} , {2,3,4}, {1,2,4}, {1,2}, {1,4}, {1,2}, {4}, {3}, {2}, {1}}

biⁱ-Regular supra open $\{\varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,2,4\}, \{2,3,4\}\}$

Note that {1}, {3} are bi^{i} -regular supra open but {1} U {3} = {1,3} is not bi^{i} -regular supra open

And so $\{2,3,4\},\{1,2,4\}$ are bi^i -regular supra but $\{2,3,4\} \cap \{1,2,4\} = \{2,4\}$ is not bi^i -regular supra open. **Remark 3.3:**

1. A finite union of $\mathcal{RSO}(\mathfrak{X})$ is not necessary to be $\mathcal{RSO}(\mathfrak{X})$.

2. A finite intersection of $\mathcal{RSO}(\mathfrak{X})$ is not necessary to be $\mathcal{RSO}(\mathfrak{X})$ open sets

It will be shown in the following example:

Let $\mathfrak{X} = \{1, 2, 3, 4\}$

 $\mathfrak{W} = \{\varphi, \mathfrak{X}, \{1\}, \{2,3\}, \{1,2,3\}, \{1,3,4\}, \{3,4\}\}$

 $\mathfrak{W}^{c} = \{ \varphi, \mathfrak{X}, \{2,3,4\}, \{1,4\}, \{4\}, \{2\}, \{1,2\} \}$

$$So(\mathfrak{X}) =$$

 $\{\varphi, \mathfrak{X}, \{1\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}\}$

 $Po(\mathfrak{X}) =$

 $\{\varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,3\}, \{1,$

$$bi^{i}$$
-supra =

 $\{\varphi, \mathfrak{X}, \{1\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{3\}, \{1, 1, 2, 3\}, \{3, 4\}, \{$

 $\{\psi, \omega, \{1\}, \{2, 5\}, \{3, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{2, 5, 4\}, \{3\}, \{1, 2, 4\}\}$

 $(bi^i - \text{supra})^c =$

 $\{\varphi, \mathfrak{X}, \{2,3,4\}, \{1,4\}, \{1,2\}, \{4\}, \{2\}, \{1\}, \{1,2,4\}, \{2,4\}, \{3\}\}$

 bi^i -So(\mathfrak{X}) =

 $\{\varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}\}$

 bi^i -Po(\mathfrak{X}) =

 $\{ \varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,3\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\} \}$

 $(bi^i - \operatorname{Po}(\mathfrak{X}))^c =$

$$\{ \varphi, \mathfrak{X}, \{2,3,4\}, \{1,2,4\}, \{2,4\}, \{1,4\}, \{1,2\}, \{4\}, \{3\}, \{2\}, \{1\} \}$$

 $bi^i - \mathcal{RSO}(\mathfrak{X}) =$

 $\{\varphi, \mathfrak{X}, \{1\}, \{3\}, \{1,2\}, \{1,2,4\}, \{2,3,4\}\}$

we note {2,3,4} and {1,2,4} are $bi^i - \mathcal{RSO}(\mathfrak{X})$ but {2,4} is not belong to $bi^i - \mathcal{RSO}(\mathfrak{X})$. As that respect to the union we find {1,2} and {3} belong to $bi^i - \mathcal{RSO}(\mathfrak{X})$, but {1,2,3} is not belong to $bi^i - \mathcal{RSO}(\mathfrak{X})$. **Definition 3.4:**

A subset \Re of a space $(\mathfrak{X}, So(\mathfrak{X}), P(\mathfrak{X}))$ is said to be

1. \aleph -So(\mathfrak{X})-supra open if $\mathfrak{K} \subseteq int_{\mathfrak{M}}(cl_{\mathfrak{M}}(cl_{\mathfrak{M}}))$.

2. \mathfrak{P} -So(\mathfrak{X})-supra open if $\mathfrak{K} \subseteq cl_{\mathfrak{SM}}(int_{\mathfrak{SM}}(cl_{\mathfrak{SM}}(\mathfrak{K})))$. Lemma 3.5

Every $\Re SO(\mathfrak{X})$ and $\Re -So(\mathfrak{X})$ -supra open and $\aleph -So(\mathfrak{X})$ are independent.

Proof

Directly from definition.

Definition 3.6:

A subset S of a bi^i - supra topological space is called bi^i -supra clopen set if it is both bi^i -supra open and bi^i - supra closed set in $(\mathfrak{X}, So(\mathfrak{X}), Po(\mathfrak{X}))$.

Corollary 3.7:

Let \mathfrak{K} be a bi^i - regular supra clopen set. Suppose that \mathcal{F} is a bi^i -supra closed set. Then $\mathfrak{K} \cap \mathcal{F}$ is a bi^i -regular semi supra closed sets.

Proof:

=

We have the $\mathfrak{K} \cap \mathcal{F}$ be supra closed in. Hence $cl_{\mathfrak{W}}$ - $(\mathfrak{K} \cap \mathcal{F}) = \mathfrak{K} \cap \mathcal{F}$ in \mathfrak{K} . Let $\mathfrak{K} \cap \mathcal{F} \subset \mathcal{U}$, where \mathcal{U} is regular supra open in \mathfrak{K} . Hence $\mathfrak{K} \cap \mathcal{F}$ is a regular semi supra closed set in the regular supra closed. Apply Theorem $\mathfrak{B} \subset \mathfrak{K} \subset \mathfrak{X}$.

Theorem 3.8:

suppose that $\mathfrak{B} \subset \mathfrak{K} \subset \mathfrak{X}$, \mathfrak{B} is a bi^i -regular semi supra closed set relative to \mathfrak{K} and that \mathfrak{K} is a bi^i -regular supra clopen subset of \mathfrak{X} . Then \mathfrak{B} is bi^i -regular semi supra closed relative to.

Proof

Let $\mathfrak{B} \subset \mathcal{U}$ and let \mathcal{U} be bi^i -regular supra open. We have $\mathfrak{B} \subset (\mathfrak{K} \cap \mathcal{U})$. But \mathfrak{B} is a

 bi^{i} -regular supra closed set relative to \mathfrak{K} . Hence $bi^{i} - cl_{\mathfrak{K}}(\mathfrak{B}) \subset (\mathfrak{K} \cap \mathcal{U}) \dots 1$,

Note that $\mathfrak{K} \cap \mathcal{U}$ is regular open in \mathfrak{K} . But $bi^{i} - cl_{\mathfrak{K}}(\mathfrak{B}) = bi^{i} - cl_{\mathfrak{M}}(\mathfrak{B}) \cap \mathfrak{K} \dots 2$,

From (1) and (2) it follows that

 $(\mathfrak{K} \cap bi^{i} - cl_{\mathfrak{W}}(\mathfrak{B})) \subset (\mathfrak{K} \cap \mathcal{U}).$ Consequently $\mathfrak{K} \cap bi^{i} - cl_{\mathfrak{W}}(\mathfrak{B}) \subset \mathcal{U}.$

Hence $\mathfrak{K} \cap (bi^{i}-cl_{\mathfrak{W}}(\mathfrak{B}) \cup ((bi^{i}-cl_{\mathfrak{W}}(\mathfrak{B}))^{c} \subset (\mathcal{U} \cup (bi^{i}-cl_{\mathfrak{W}}(\mathfrak{B}))^{c}).$

That is $(\mathfrak{K} \cap \mathfrak{X}) \subset (\mathcal{U} \cup (bi^i - cl_\mathfrak{W}(\mathfrak{B}))^c)$

so $\mathfrak{K} \subset (\mathcal{U} \cup (bi^i - cl_\mathfrak{W}(\mathfrak{B}))^c) = G ... (3)$

But then G be a supra open set, since \Re be a bi^i -regular-supra closed in \mathfrak{X} ,

from (3) we have

 $\begin{aligned} (bi^{i}-cl_{\mathfrak{M}}(\mathfrak{K}))^{c} &\subset (\mathcal{U} \cup (bi^{i}-cl_{\mathfrak{M}}(\mathfrak{B}))^{c}) = G \ ...(4) \\ \text{But } bi^{i}-cl_{\mathfrak{M}}(\mathfrak{B}) \subset bi^{i}-cl_{\mathfrak{M}}(\mathfrak{K}) \ ...(5) \end{aligned}$

From (4) and (5) we have $(cl \ \mathfrak{B}) \subset (\mathcal{U} \cup (bi^{i} - cl_{\mathfrak{M}}(\mathfrak{B}))^{c})$.

Hence $bi^i - cl_{\mathfrak{B}}(\mathfrak{B}) \subset \mathcal{U}$ because $bi^i - cl_{\mathfrak{B}}(\mathfrak{B}) \cap (bi^i - cl_{\mathfrak{B}}(\mathfrak{B}))^c = .$

This implies that $\mathfrak B$ is regular semi supra closed relative to .

lemma 3.9:

If \Re is bi^i -regular open and bi^i -regular semi closed then \Re is bi^i -semi clopen.

4. Continuity in *biⁱ*-Supra Topological Space Definition 4.1

A function

 $f: (\mathfrak{X}, So(\mathfrak{X}), Po(\mathfrak{X})) \to (\mathcal{Y}, So(\mathcal{Y}), Po(\mathcal{Y}))$ is called: 1. bi^i -Semi supra continuous function if the inverse image for any semi- supra open set in \mathcal{Y} is semisupra open set in \mathfrak{X} .

2. bi^i - Regular supra continuous function if the inverse image for any regular - supra open set in \mathcal{Y} is regular- supra open set in \mathfrak{X} .

3. bi^i -regular semi supra-continuous function if the inverse image for any regular semi – supra open set in \mathcal{Y} is regular semi- supra open set in \mathfrak{X} . **Theorem 4.2:**

Let $f: (\mathfrak{X}, So(\mathfrak{X}), Po(\mathfrak{X})) \to (\mathcal{Y}, So(\mathcal{Y}), Po(\mathcal{Y}))$, be a bi^{i} -supra function then the following are equivalents:

1. *f* be a bi^i - \mathcal{R} So(\mathfrak{X}) supra continuous.

2. inverse image for every bi^i -regular supra open subset in \mathcal{Y} is bi^i -regular semi supra open in .

3. inverse image of every bi^i -regular supra closed subset in \mathcal{Y} be a bi^i -regular semi supra closed in \mathcal{Y} **proof**

suppose 1) to prove 2)

since f is a bi^i - \Re So(\mathfrak{X}) supra continuous

References

[1] Abo-elhamayel, M. and Al-shami, T. M., "Supra homeomorphism in supra topological ordered spaces", Facta Universitatis, Series: Mathematics and Informatics, (2016), 31 (5):1091-1106.

[2] Al-shami, T. M., "On supra semi open sets and some applications on topological spaces", Journal of Advanced Studies in Topology, (2017),8:2 c, 144–153.

[3] Allam, A .A.,Mashhour, A.S. , Mohamoud, F. S. and Kheder, F. H. "On supra topological spaces", Indian J. pure and Appl. Math, (1983) ,4(14):502-510.

[4] Caldas, M., and Devi, R., Sampathkuma, S. "On supra α -open sets and s α -continuous functions", General Mathematics, (2008), 16(2):77-88

then inverse image for every bi^i -regular supra opn subset in \mathcal{Y} be bi^i -regular

semi supra opn in \mathcal{Y} .

Thus, the condition is fulfilled.

suppose 2) to prove 3)

if we take the complement to the two condition we get

the inverse image for every bi^i -regular supra closed subset of \mathcal{Y} be a bi^i -

regular semi supra closed of $\mathcal Y$.

It is the three condition .

suppose 3) to prove 1)

let G be a bi^i -regular supra closed subset of Y

 $\therefore \mathcal{G}^c$ be a bi^i -regular supra open subset of \mathcal{Y}

 $:: \mathcal{G}$ be a bi^i -regular semi supra closed subset of \mathfrak{X}

 $\therefore G^c$ be a bi^i -regular semi supra open subset of \mathfrak{X} .

Thus, the first condition is fulfilled.

Remark 4.3:

Every bi^i -regular supra continuous function is a bi^i supra regular semi continuous function but the converse is not true.

Proof:

Let $f:(\mathfrak{X}, So(\mathfrak{X}), Po(\mathfrak{X})) \to (\mathcal{Y}, So(\mathcal{Y}), Po(\mathcal{Y}))$ be a bi^i -regular supra continuous function and \mathfrak{K} is regular supra open set in \mathcal{Y} .

Then there exist \mathfrak{B} in \mathfrak{X} s.t $f(\mathfrak{B}) = \mathfrak{K}$.

: f is bi^i -regular semi supra continuous

 $\therefore f(\mathfrak{B}) = \mathfrak{K} \text{ and } f^{-1}(\mathfrak{K}) = .$

For that $f^{-1}(\mathfrak{K})$ be a regular supra open set in \mathfrak{X} . Hence supra regular semi open set in \mathfrak{X} . Hence f is bi^{i} -regular semi supra continuous function.

The converse for the previous theory is an incorrect, this will be shown by example.

Example 4.4:

Let $\mathfrak{X} = \{1, 2, 3\}$

 $\mathfrak{W} = \{\varphi, \mathfrak{X}, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}\}$

$$\mathcal{Y} = \{\mathfrak{a}, \mathfrak{b}, \mathfrak{c}\}$$

 $\mathfrak{W} = \{\varphi, \mathcal{Y}, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$

f(1) = a, f(2) = b, f(3) = c.

We find $\{a, b\}$ is bi^i -regular semi supra continuouss function but not bi^i -regular supra continuous function.

[5] Kamaraj-M, Ramkumar. G and Ravi. O., "Supra s g-closed sets and g s- closed sets", International Journal of Mathematical Archive, (2011), 2(11): 2413-2419.

[6] Jafari S. and Tahiliani, S., "Supra β -open sets and supra β -continuity on topological spaces", Annales Univ. Sci. Budapest. (2013), 56, 1-9.

[7] Levine N., "Semi-open set and semi-continuity in topological space" Amer. Math. Monthly, 1963

[8] Jamunarani, R. and Jeyanthi, P., "Regular sets in generalized topological spaces," Acta Mathematica Hungarica, 2012, vol. 135, no. 4, pp. 342–349.

Tikrit Journal of Pure Science Vol. 27 (1) 2022

حول المجموعات الشبه الفوقية المفتوحة المنتظمة والدوال الشبه الفوقية المستمرة في الفضاءات

التبولوجية الفوقية

مروة فتحي احمد ، طه حميد جاسم

قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق

الملخص

الغرض من هذا البحث هو تقديم المفاهيم .الدالة المستمرة الفوقية و الدالة المستمرة الشبه الفوقية والمجموعة المفتوحة المنتظمة والمجموعة المفتوحة شبه الفوقية المنتظمة في فضاء ثنائي التبولوجي الفوقي من النمط i العلاقات بين هذه الدوال قد درست وتحرينا بعض الخواص لها.