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ABSTRACT 

The M-Polynomial and Nirmala index are considered as two of the 

most recent found and important subjects in chemical graph theory. In 

this paper we drive and prove the computing formula of Nirmala index 

from the M-Polynomial, then compute the M-Polynomial for some 

certain composite graphs, and the Nirmala index via the computed M-

Polynomial. The composite graphs are new defined graphs Kn(Pt)Km , 

Cn(e)Kn , and others obtained from simple graphs by certain graph 

operations such as join, corona, and cluster of any graph with some 

special graphs such as complete, path, …etc. 

 

 

1 Introduction 
Let G = (V,E) be a simple connected graph with 

vertex set V (G) and edge set E(G) , where the order 

and size of G are |V (G)| = nG and |E(G)| = mG 

respectively[1]. The degree of a vertex u is the 

number of all edges incidence to u in G, which is 

denoted by dG(u) [1]. By pendent vertex we mean a 

vertex of degree one, and by i-vertex we mean the 

vertex v has degree i, and an edge joining an i-vertex 

to a j-vertex is denoted by (i,j)-edge [1, 2]. A u-v walk 

Wn in a connected graph G, is a sequence of vertices 

(u = u1,u2,...,un−1,un = v) in G, such that consecutive 

vertices in Wn are adjacent in G. A path is just a walk 

in which no vertex is repeated, and a path with n 

vertices is denoted by Pn. A closed path is called 

cycle, and denoted by Cn. A graph in which every two 

vertices are adjacent is called complete graph and 

denoted by Kn. A star graph Sn is a graph that has n+1 

vertices, one of them has degree of n which is called 

the center vertex and the other n vertices have degree 

of one which are called pendent vertices [1, 3, 4]. 

Let G and H be two graphs then the vertex gluing of 

G and H is a new graph that constructed from G and 

H by identifying a vertex between them [3], the 

vertex gluing of G and H is denoted by G(o)H, which 

is a new graph of order nG + nH -1 and size mG+ mH 

(see Figure 1). 

 

 
Figure 1: G(o)H 

 

A graph in which a vertex is labeled in a special way 

so as to distinguish from other vertices is called a 

rooted graph, and the special vertex is called the root 

of it [5].The cluster of two graphs G and H is denoted 

by G{H}, which can be obtained by taking a copy of 

G and nG copies of the rooted graph H such that we 

identify the root of the i
th 

copy of H with the i
th 

vertex 

of G for each i ∈ {1,2,3,..., nG}[6]. For instance, the 

cluster of the path P5 and the cycle  C3 is shown in the 

Figure 2. 
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Figure 2: P5{C3} 

 

The join (sum) of two graphs G and H is a new graph 

that denoted by G + H, with the vertex set V (G + H) 

= V (G) ∪ V (H) and edge set E(G + H) = E(G) ∪ 

E(H) ∪ {uv ; u ∈ V (G) and v ∈ V (H)} [4]. The 

corona product of G and H is obtained by taking a 

copy of G and nG copies of H and join the i
th 

vertex of 

G with each vertex of the i
th 

copy of H for each i ∈ 

{1,2,3,...,nG} and denoted by G ⨀ H [6]. For 

instance, the join and corona product of the complete 

graph K3 and the path P2 are shown in the Figure 3  

respectively [7]. 

 
Figure 3: K3+P2 and K3⨀P2 

 

A graph polynomial is a graph invariant whose values 

are polynomials. An important degree-based 

polynomial is the M-Polynomial which is defined by 

Deutsch and Klavžar in 2014 [8]. For a graph 𝐺, the 

M-Polynomial is defined by: 

𝑀(𝐺, 𝑥, 𝑦) = ∑  𝑖≤𝑗 𝑚𝑖𝑗(𝐺)𝑥𝑖𝑦𝑗 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (1)  

where 𝑖, 𝑗 ≥ 1 and 𝑚𝑖𝑗 is the number of (i,j)-edges of 

G, such that 𝑖 = 𝑑𝐺(𝑢), and 𝑗 = 𝑑𝐺(𝑣) for some 

vertices u,v ∈G. 

We can see that the M-Polynomial for a graph 𝐺 also 

can be represent as: 

𝑀(𝐺, 𝑥, 𝑦) = ∑  𝑒=𝑢𝑣∈𝐸(𝐺) 𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)    ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙

(2)  
Many studies have done about the M-Polynomial 

such as computation of M-polynomial book graph 

and starphene graph in [9,10]. Also Basavanagoud, 

and et al obtained the M-polynomial of some graph 

operations and cycle related graphs in [11].  

A graph invariant is a number related to a graph 

which is structural invariant, fixed under graph 

automorphisms. In chemistry these invariants are 

known as the topological indices [2]. As a chemical 

descriptor, the topological index has an integer 

attached to the graph which features the graph, and 

there is no change under graph automorphism [7].  A 

degree based topological index of the graph 𝐺 is a 

graph invariant of the form: 

𝐼(𝐺) = ∑  𝑒=𝑢𝑣∈𝐸(𝐺) 𝑓(𝑑𝐺(𝑢), 𝑑𝐺(𝑣)) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (3)     

where f is a function appropriately selected for 

possible chemical applications [8]. Unlike the other 

graph polynomials through this polynomial, we can 

easily compute more than one degree based 

topological indices such as Atom bond connectivity 

index, Geometric connectivity index and some other 

indices by a certain derivative or integral or 

sometimes both. Some formula for computing those 

indices from the M-Polynomial are found in [8-14] as 

we illustrate some of these formulas in the following 

Table. 

 

Table 1: Formulas of computing some degree based topological indices from 𝑴(𝑮, 𝒙, 𝒚) 

Topological indices 𝒇(𝒅𝑮(𝒖), 𝒅𝑮(𝒗)) Derivation from 𝑴(𝑮, 𝒙, 𝒚) 

Atom Bond Connectivity index ∑𝑢𝑣∈𝐸(𝐺)  √
𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2

𝑑𝐺(𝑢)𝑑𝐺(𝑣)
 𝐷𝑥

1/2
𝑄(−2)𝐽𝑆𝑥

1/2
𝑆𝑦

1/2
[𝑀(𝐺, 𝑥, 𝑦)]𝑥=1  [10,14] 

Geometric Arithmetic index ∑𝑢𝑣∈𝐸(𝐺)  
2√𝑑𝐺(𝑢)𝑑𝐺(𝑣)

𝑑𝐺(𝑢)+𝑑𝐺(𝑣)
 2𝑆𝑥𝐽𝐷𝑥

1/2
𝐷𝑦

1/2
[𝑀(𝐺, 𝑥, 𝑦)]𝑥=1   [10,13,14] 

First Zagreb index ∑𝑢𝑣∈𝐸(𝐺)  𝑑𝐺(𝑢)+𝑑𝐺(𝑣) (𝐷𝑥 + 𝐷𝑦)[𝑀(𝐺, 𝑥, 𝑦)]𝑥=𝑦=1  [8,11,12] 

Second Zagreb index ∑𝑢𝑣∈𝐸(𝐺)  𝑑𝐺(𝑢)𝑑𝐺(𝑣) (𝐷𝑥𝐷𝑦)[𝑀(𝐺, 𝑥, 𝑦)]𝑥=𝑦=1       [8,11,12] 

Randic index ∑𝑢𝑣∈𝐸(𝐺)  
1

√𝑑𝐺(𝑢)𝑑𝐺(𝑣)
 (𝑆𝑥

1/2
𝑆𝑦

1/2
)[𝑀(𝐺, 𝑥, 𝑦)]𝑥=𝑦=1  [8] 



  
 

  
Tikrit Journal of Pure Science Vol. 27 (3) 2022 
 

94 

 

where used operators are defined as[8-10,12-14]: 

 

𝐷𝑥 = 𝑥
∂(𝑀(𝐺, 𝑥, 𝑦))

∂𝑥
, 𝐷𝑦 = 𝑦

∂(𝑀(𝐺, 𝑥, 𝑦))

∂𝑦
, 𝑆𝑥 = ∫  

𝑥

0

 
𝑀(𝐺, 𝑡, 𝑦)

𝑡
𝑑𝑡, 𝑆𝑦 = ∫  

𝑦

0

 
𝑀(𝐺, 𝑥, 𝑡)

𝑡
𝑑𝑡 ,

𝐷𝑥
1/2

(𝑀(𝐺, 𝑥, 𝑦)) = √𝑥
∂(𝑀(𝐺, 𝑥, 𝑦))

∂𝑥
√𝑀(𝐺, 𝑥, 𝑦), 𝐷𝑦

1/2
(𝑀(𝐺, 𝑥, 𝑦)) = √𝑦

∂(𝑀(𝐺, 𝑥, 𝑦))

∂𝑦
√𝑀(𝐺, 𝑥, 𝑦)

𝑆𝑥
1/2

(𝑀(𝐺, 𝑥, 𝑦)) = √∫  
𝑥

0

𝑀(𝐺, 𝑡, 𝑦)

𝑡
 𝑑𝑡√𝑀(𝐺, 𝑥, 𝑦), 𝑆𝑦

1/2
(𝑀(𝐺, 𝑥, 𝑦)) = √∫  

𝑦

0

 
𝑀(𝐺, 𝑥, 𝑡)

𝑡
𝑑𝑡√𝑀(𝐺, 𝑥, 𝑦)

 

𝐽(𝑀(𝐺, 𝑥, 𝑦)) = 𝑀(𝐺, 𝑥, 𝑥),  𝑄𝛼(𝑀(𝐺, 𝑥, 𝑦)) = 𝑥𝛼𝑀(𝐺, 𝑥, 𝑦)  

 

One of the most recent defined degree based 

topological indices is Nirmala index defined by Kulli 

in 2021 [15], which is defined as follows: 

𝑁(𝐺) = ∑  𝑢𝑣∈𝐸(𝐺) √𝑑𝐺(𝑢)+𝑑𝐺(𝑣)  ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (4)  

where 𝑑𝐺(𝑢), and 𝑑𝐺(𝑣) are degrees of vertices u and 

v in G respectively. Recently, some mathematical 

properties of Nirmala index were studied in [16], also 

many studies have done on Nirmala index, such as 

the Nirmala index of Kragujevac trees in [17] by Ivan 

Gutman, and et al. Also more studies can be found, 

for instance different versions of Nirmala index in 

[18]. Also on multiplicative inverse Nirmala indices 

and Nirmala energy in [19, 20]. 

In the next section, the formula of computing Nirmala 

index from the M-Polynomial, some important results 

about computing the M-Polynomial and next Nirmala 

index through the obtained polynomial are shown for 

certain graphs. 

2 Results and Discussion   
Theorem 2.1 For a graph G the formula of Nirmala 

index can be obtained from the M-Polynomial of G as 

follows: 

𝑁(𝐺) = (𝐷𝑥
1/2

𝐽)[𝑀(𝐺, 𝑥, 𝑦)]|
𝑥=1

∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ (5)   

 where the two operators 𝐷𝑥
1/2

, and 𝐽 are defined as 

above, and 𝑀(𝐺, 𝑥, 𝑦) is the M-Polynomial of the 

graph G. 

 Proof:  Since 𝑀(𝐺, 𝑥, 𝑦) = ∑𝑢𝑣∈𝐸(𝐺)  𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣), 

then: 

 

           

(𝐷𝑥

1
2𝐽) [𝑀(𝐺, 𝑥, 𝑦)]  = (𝐷𝑥

1
2𝐽) [ ∑  

𝑢𝑣∈𝐸(𝐺)

  𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)]

 = ∑  

𝑢𝑣∈𝐸(𝐺)

 (𝐷𝑥

1
2𝐽) [𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)] = ∑  𝐷𝑥

1
2

𝑢𝑣∈𝐸(𝐺)

  [𝐽(𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣))]

 = ∑  

𝑢𝑣∈𝐸(𝐺)

 𝐷𝑥

1
2[𝑥𝑑𝐺(𝑢)+𝑑𝐺(𝑣)]

 

= ∑  

𝑢𝑣∈𝐸(𝐺)

 √(𝑑𝐺(𝑢)+𝑑𝐺(𝑣))𝑥𝑑𝐺(𝑢)+𝑑𝐺(𝑣)√𝑥𝑑𝐺(𝑢)+𝑑𝐺(𝑣)

 = ∑  

𝑢𝑣∈𝐸(𝐺)

 √𝑑𝐺(𝑢)+𝑑𝐺(𝑣) = 𝑁(𝐺) , at 𝑥 = 1, which is the result (4). 

 

 

Theorem 2.2 Let 𝐾𝑛 and 𝐾𝑚 be two complete graphs, 

then the M-Polynomial of the vertex gluing of them 

is: 

𝑀(𝐾𝑛(o)𝐾𝑚, 𝑥, 𝑦)  = (
𝑛 − 1

2
) (𝑥𝑦)𝑛−1 + (

𝑚 − 1
2

) (𝑥𝑦)𝑚−1

 +𝑥𝑛+𝑚−2[(𝑛 − 1)𝑦𝑛−1 + (𝑚 − 1)𝑦𝑚−1].
  

Proof: The graph 𝐾𝑛(o)𝐾𝑚  has 𝑛 + 𝑚 − 1  vertices 

and (
𝑛
2

) + (
𝑚
2

) edges.  

Suppose that the vertex gluing point between them is 

𝑢∗. Let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐾𝑛(o)𝐾𝑚) then 

Case 1 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐾𝑛) such that 𝑢, 𝑣 ≠ 𝑢∗ then: 

𝑑𝐾𝑛(o)𝐾𝑚
(𝑢) = 𝑑𝐾𝑛(o)𝐾𝑚

(𝑣) = 𝑛 − 1.  

case 2 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐾𝑚) such that 𝑢, 𝑣 ≠ 𝑢∗ then: 

𝑑𝐾𝑛(o)𝐾𝑚
(𝑢) = 𝑑𝐾𝑛(o)𝐾𝑚

(𝑣) = 𝑚 − 1.   

Case 3 If 𝑒 = 𝑢∗𝑣 such that 𝑣 ∈ 𝑉(𝐾𝑛), then 

𝑑𝐾𝑛(o)𝐾𝑚
(𝑢∗) = 𝑛 + 𝑚 − 2 and 𝑑𝐾𝑛(o)𝐾𝑚

(𝑣) = 𝑛 −

1  

Case 4 If 𝑒 = 𝑢∗𝑣 such that 𝑣 ∈ 𝑉(𝐾𝑚), then 

𝑑𝐾𝑛(o)𝐾𝑚
(𝑢∗) = 𝑛 + 𝑚 − 2 and 𝑑𝐾𝑛(o)𝐾𝑚

(𝑣) = 𝑚 − 1  

From the above cases, 
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𝑀(𝐾𝑛(o)𝐾𝑚, 𝑥, 𝑦)  = ∑  

𝑒=𝑢𝑣∈𝐸(𝐾𝑛(o)𝐾𝑚)

 𝑥𝑑𝐾𝑛(o)𝐾𝑚(𝑢)y𝑑𝐾𝑛(o)𝐾𝑚(𝑣)

 = ∑  

𝑒=𝑢𝑣∈𝐸(𝐾𝑛−𝑢∗)

 𝑥(𝑛−1)𝑦(𝑛−1) + ∑  

𝑒=𝑢𝑣∈𝐸(𝐾𝑚−𝑢∗)

 𝑥(𝑚−1)𝑦(𝑚−1)

 +(𝑛 − 1)𝑥𝑛+𝑚−2𝑦𝑛−1 + (𝑚 − 1)𝑥𝑛+𝑚−2𝑦𝑚−1

 = ((
𝑛
2

) − (𝑛 − 1)) (𝑥𝑦)𝑛−1 + ((
𝑚
2

) − (𝑚 − 1)) (𝑥𝑦)𝑚−1

 +(𝑛 − 1)𝑥𝑛+𝑚−2𝑦𝑛−1 + (𝑚 − 1)𝑥𝑛+𝑚−2𝑦𝑚−1

 = (
𝑛 − 1

2
) (𝑥𝑦)𝑛−1 + (

𝑚 − 1
2

) (𝑥𝑦)𝑚−1

 +𝑥𝑛+𝑚−2[(𝑛 − 1)𝑦𝑛−1 + (𝑚 − 1)𝑦𝑚−1].

 

 

From Theorems 2.1 and 2.2, we get the following 

result:   

Corollary 2.1 The Nirmala index of the graph 

𝐾𝑛(𝑜)𝐾𝑚 is given by: 
                          

𝑁(𝐾𝑛(o)𝐾𝑚)  = (
𝑛 − 1

2
) √2(𝑛 − 1) + (

𝑚 − 1
2

) √2(𝑚 − 1)

 +(𝑛 − 1)√2𝑛 + 𝑚 − 3 + (𝑚 − 1)√𝑛 + 2𝑚 − 3.
    

Definition 2.1 Let Kn , Km be two complete graphs 

and Pt be a path. We define a new graph Kn(𝑃𝑡)Km  by  

vertex gluing  Kn and Km to Pt  at it’s end points (see 

Figure 4).  

 
Figure 4: Kn(𝑷𝒕)Km 

 

Theorem 2.3 Let Kn(𝑃𝑡)Km be defined as above. Then  The M-Polynomial of the graph Kn(𝑃𝑡)Km is: 

 

𝑀(𝐾𝑛(𝑃𝑡)𝐾𝑚 , 𝑥, 𝑦) = (𝑥𝑦)2(𝑦𝑛−2 + 𝑦𝑚−2 + 𝑡 − 3) + (𝑛 − 1)𝑥𝑛𝑦𝑛−1 + (𝑚 − 1)𝑥𝑚𝑦𝑚−1

+ (
𝑛 − 1

2
) (𝑥𝑦)𝑛−1 + (

𝑚 − 1
2

) (𝑥𝑦)𝑚−1.
 

 

Proof: The graph Kn(𝑃𝑡)Km has n + m + t − 2 vertices 

and (𝑛
2

) + (𝑚
2

) + 𝑡 − 1  edges. For all vertex v of the 

graph Kn(𝑃𝑡)Km there are the following possibilities of 

degree v ; 2,n − 1,n,m − 1,m. Let e = uv ∈ 

E(Kn(𝑃𝑡)Km) then based on this information we have 

the following illustration table (see Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Edge partitions and number of edges in each 

partition based on degree of end vertices in each edges 

of the graph 𝑲𝒏(𝑷𝒕)𝑲𝒎 

Type of edges Number of edges 

(2,2) 𝑡 − 3 

(2, 𝑛) 1 

(2, 𝑚) 1 

(𝑛, 𝑛 − 1) 𝑛 − 1 

(𝑛 − 1, 𝑛 − 1) (
𝑛
2

) − 𝑛 + 1 

(𝑚, 𝑚 − 1) 𝑚 − 1 

(𝑚 − 1, 𝑚 − 1) (
𝑚
2

) − 𝑚 + 1 

Sum of all edges (
𝑛
2

) + (
𝑚
2

) + 𝑡 − 1 
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Hence, 

𝑀(𝐾𝑛(𝑃𝑡)𝐾𝑚, 𝑥, 𝑦)  = (𝑡 − 3)(𝑥𝑦)2 + 𝑥2𝑦𝑛 + 𝑥2𝑦𝑚 + (𝑛 − 1)𝑥𝑛𝑦𝑛−1 + (𝑚 − 1)𝑥𝑚𝑦𝑚−1

 + [(
𝑛
2

) − 𝑛 + 1] (𝑥𝑦)𝑛−1 + [(
𝑚
2

) − 𝑚 + 1] (𝑥𝑦)𝑚−1

 = (𝑥𝑦)2(𝑦𝑛−2 + 𝑦𝑚−2 + 𝑡 − 3) + (𝑛 − 1)𝑥𝑛𝑦𝑛−1 + (𝑚 − 1)𝑥𝑚𝑦𝑚−1

 + (
𝑛 − 1

2
) (𝑥𝑦)𝑛−1 + (

𝑚 − 1
2

) (𝑥𝑦)𝑚−1.

 

                                                                                   ∎ 

From Theorems 2.1 and 2.3, we get the following 

result:   

Corollary 2.2 The Nirmala index of the graph 

Kn(𝑃𝑡)Km is: 

 

𝑁(𝐾𝑛(𝑃𝑡)𝐾𝑚) = (
𝑛 − 1

2
) √2(𝑛 − 1) + (

𝑚 − 1
2

) √2(𝑚 − 1) + (𝑛 − 1)√2𝑛 − 1

+(𝑚 − 1)√2𝑚 − 1 + √𝑛 + 2 + √𝑛 + 2 + 2(𝑡 − 3).
 

                                ∎ 
Definition 2.2 Let Kn be a complete graph and Cn be 

a cycle. Suppose that we have n copies of Kn such that 

each copy of Kn intersects with Cn in only a unique 

edge and no two copies of Kn are intersected in their 

edges (see Figure 5), we denote the constructed 

graph by Cn(e)Kn.  

 
Figure 5: Cn(e)Kn 

 

Theorem 2.4 Let Kn be a complete graph and Cn be a 

cycle, and Cn(e)Kn be defined as above, then the M-

Polynomial of the Cn(e)Kn is:  

𝑀(𝐶𝑛(𝑒)𝐾𝑛 , 𝑥, 𝑦) = 𝑛(𝑥𝑦)𝑛−1 [(𝑥𝑦)𝑛−1 + 2(𝑛 −

2)𝑥𝑛−1 + (
𝑛 − 2

2
)].  

Proof: We see that ta graph Cn(e)Kn has n(n − 1) 

vertices and 𝑛 (
𝑛
2

) edges. If e = uv ∈ E(Cn(e)Kn), then 

there are three possible cases for e: 

Case 1 If e = uv ∈ E(Cn) then 𝑑𝐶𝑛(𝑒)𝐾𝑛
(u) = 

𝑑𝐶𝑛(𝑒)𝐾𝑛
(v) = 2(n − 1), 

Case 2 If e = uvi such that u ∈ V (Kn) for some copy 

of Kn then 𝑑𝐶𝑛(𝑒)𝐾𝑛
(u) = n − 1 and 𝑑𝐶𝑛(𝑒)𝐾𝑛

(vi) = 2(n − 

1), for all i ∈ {1,2,3,...,n} 

Case 3 If e = uv ∈ E(Kn) for some copy of Kn such 

that u,v ≠ vi for all i ∈ {1,2,3,...,n} then 𝑑𝐶𝑛(𝑒)𝐾𝑛
(u) = 

𝑑𝐶𝑛(𝑒)𝐾𝑛
(v) = n − 1. 

Based on the above three cases we have the following 

table (see Table 3). 
 

Table 3: Edge partitions and number of edges in each 

partition based on degree of end vertices in each edges 

of the graph 𝑪𝒏(𝒆)𝑲𝒏 

Type of edges Number of edges 

(2(𝑛 − 1),2(𝑛 − 1)) 𝑛 

(2(𝑛 − 1), 𝑛 − 1) 2𝑛(𝑛 − 2) 

(𝑛 − 1, 𝑛 − 1) 𝑛 (
𝑛 − 2

2
) 

Sum of all edges 𝑛 (
𝑛
2

) 

 

Hence, 

𝑀(𝐶𝑛(𝑒)𝐾𝑛 , 𝑥, 𝑦)  = ∑  

𝑒=𝑢𝑣∈𝐸(𝐶𝑛(𝑒)𝐾𝑛)

  𝑥𝑑𝐶𝑛(𝑒)𝐾𝑛(𝑢)𝑦𝑑𝐶𝑛(𝑒)𝐾𝑛(𝑣)

 = 𝑛(𝑥𝑦)2(𝑛−1) + 2𝑛(𝑛 − 2)𝑥2(𝑛−1)𝑦𝑛−1 + 𝑛 (
𝑛 − 2

2
) (𝑥𝑦)𝑛−1

 = 𝑛(𝑥𝑦)𝑛−1 [(𝑥𝑦)𝑛−1 + 2(𝑛 − 2)𝑥𝑛−1 + (
𝑛 − 2

2
)] .

 

                                                      ∎   

 

From Theorems 2.1 and 2.4, we get the following 

result:   

Corollary 2.3 The Nirmala index of the graph 

Cn(e)Kn is: 

     𝑁(𝐶𝑛(𝑒)𝐾𝑛) = 𝑛√𝑛 − 1 [2 + 2(𝑛 − 2)√3 + √2 (
𝑛 − 2

2
)] .      

Theorem 2.5 Let G be any graph and Kn be the 

complete graph, then the M-Polynomial of the cluster 

graph of G and Kn is: 

𝑀(𝐺{𝐾𝑛}, 𝑥, 𝑦) = (𝑥𝑦)𝑛−1 [𝑀(𝐺, 𝑥, 𝑦) + (𝑛 − 1) ∑ 𝑥𝑑𝐺(𝑢)
𝑢∈𝑉(𝐺) +

𝑛𝐺 (
𝑛 − 1

2
)].  
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Proof: Clearly the graph G{Kn} has n 𝑛𝐺 vertices and 

𝑚𝐺 + 𝑛𝐺 (
𝑛
2

) edges, where 𝑚𝐺  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐺. 

 Let e = uv ∈ E(G{Kn}) then, 

Case 1 If e = uv ∈ E(G) then 𝑑𝐺{𝐾𝑛}(u) = dG(u) + n − 

1 and 𝑑𝐺{𝐾𝑛}(v) = dG(v) + n − 1. 

Case 2 If e = uv ∈ E(Kn) such that u be one of the 

identified vertex and v ∈ V (Kn), for some copy of Kn, 

then 𝑑𝐺{𝐾𝑛}(u) = dG(u) + n − 1 and 𝑑𝐺{𝐾𝑛}(v) = n − 1. 

Case 3 If e = uv ∈ E(Kn) such that non of u and v is 

the identified vertex, then 𝑑𝐺{𝐾𝑛}(u) = 𝑑𝐺{𝐾𝑛}(v) = n − 

1. 

From the above cases 

 

 

 

𝑀(𝐺{𝐾𝑛}, 𝑥, 𝑦)  = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺{𝐾𝑛})

  𝑥𝑑𝐺{𝐾𝑛}(𝑢)𝑦𝑑𝐺{𝐾𝑛}(𝑣)

 = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

  𝑥𝑑𝐺(𝑢)+𝑛−1𝑦𝑑𝐺(𝑣)+𝑛−1

 +𝑛𝐺 ∑  

𝑒=𝑢𝑣∈𝐸(𝐾𝑛); 𝑢 is the 𝑖𝑡ℎ identified vertex 

  𝑥𝑑𝐺(𝑢)+𝑛−1𝑦𝑛−1

 +𝑛𝐺 ∑  

𝑒=𝑢𝑣∈𝐸(𝐾𝑛);  𝑢,𝑣 are not the identified vertex 

  (𝑥𝑦)𝑛−1

 

  = (𝑥𝑦)𝑛−1𝑀(𝐺, 𝑥, 𝑦) + (𝑛 − 1) ∑ 𝑥𝑑𝐺(𝑢)+𝑛−1𝑦𝑛−1

𝑢∈𝑉(𝐺)

 +𝑛𝐺 (
𝑛(𝑛 − 1)

2
− (𝑛 − 1)) (𝑥𝑦)𝑛−1

     = (𝑥𝑦)𝑛−1 [𝑀(𝐺, 𝑥, 𝑦) + (𝑛 − 1) ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺)

+ 𝑛𝐺 (
𝑛 − 1

2
)] .

 

∎ 

From Theorems 2.1 and 2.5, we get the following 

result:   

Corollary 2.4 The Nirmala index of G{Kn} is: 

𝑁(𝐺{𝐾𝑛}) = ∑  𝑢𝑣∈𝐸(𝐺) √𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 2(𝑛 − 1)

+(𝑛 − 1) ∑ √𝑑𝐺(𝑢) + 2(𝑛 − 1)𝑢∈𝑉(𝐺) + 𝑛𝐺 (
𝑛 − 1

2
) √2(𝑛 − 1).

  

∎ 

Theorem 2.6 Let G be any graph and Pn (n ≥ 3) be a 

path such that one of it’s end vertices be it’s root. 

Then the M-Polynomial of the cluster graph G{Pn} 

is: 

𝑀(𝐺{𝑃𝑛}, 𝑥, 𝑦) =
(𝑥𝑦)[𝑀(𝐺, 𝑥, 𝑦) + 𝑦 ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺) + (𝑛 −

3)𝑛𝐺𝑥𝑦 + 𝑛𝐺𝑥].  

Proof: Let e = uv ∈ E(G{Pn}), then there are three 

cases: 

Case 1 If e = uv ∈ E(G). Then 𝑑𝐺{𝑃𝑛}(u) = dG(u) + 1 

and 𝑑𝐺{𝑃𝑛}(v) = dG(v) + 1. 

Case 2 If e = uv ∈ E(Pn), for some copy of Pn such 

that u be the root vertex of Pn. Then 𝑑𝐺{𝑃𝑛}(u) = dG(u) 

+ 1 and 𝑑𝐺{𝑃𝑛}(v) = 2. 

Case 3 If e = uv ∈ E(Pn) for some copy of Pn such 

that u,v are not root of Pn. Then 𝑑𝐺{𝑃𝑛}(u) = 𝑑𝐺{𝑃𝑛}(v) 

= 2 or 𝑑𝐺{𝑃𝑛}(u) = 2, 𝑑𝐺{𝑃𝑛}(v) = 1. 

From the above cases, 

 

 

 

𝑀(𝐺{𝑃𝑛}, 𝑥, 𝑦) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺{𝑃𝑛})

𝑥𝑑𝐺{𝑃𝑛}(𝑢)𝑦𝑑𝐺{𝑃𝑛}(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)+1𝑦𝑑𝐺(𝑣)+1 + ∑ 𝑥𝑑𝐺(𝑢)+1𝑦2

𝑢∈𝑉(𝐺)

+𝑛𝐺(𝑛 − 3)(𝑥𝑦)2 + 𝑛𝐺𝑥2𝑦

= (𝑥𝑦) [𝑀(𝐺, 𝑥, 𝑦) + 𝑦 ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺)

+ (𝑛 − 3)𝑛𝐺𝑥𝑦 + 𝑛𝐺𝑥] .

 

                                                                                           

∎ 

From Theorems 2.1 and 2.6, we get the following 

result:   

Corollary 2.5 The Nirmala index of G{Pn} is: 

𝑁(𝐺{𝑃𝑛}) = ∑  𝑒=𝑢𝑣∈𝐸(𝐺) √𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 2 +

∑ √𝑑𝐺(𝑢) + 3𝑢∈𝑉(𝐺)   + 𝑛𝐺[2𝑛 − 6 + √3]  

Theorem 2.7 Let G be any graph and Cn be a cycle 

graph then the M-Polynomial of the cluster graph 

G{Cn} is: 

𝑀(𝐺{𝐶𝑛}) =

(𝑥𝑦)2[𝑀(𝐺, 𝑥, 𝑦) + 2 ∑ 𝑥𝑑𝐺(𝑢)
𝑢∈𝑉(𝐺)   + 𝑛𝐺(𝑛 − 2)].  
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Proof: Let e = uv ∈ E(G{Cn}). Then 

Case 1 If e = uv ∈ E(G). Then 𝑑𝐺{𝐶𝑛}(u) = dG(u) + 2 

and 𝑑𝐺{𝐶𝑛} (v) = dG(v) + 2. 

Case 2 If e = uv ∈ E(Cn), for some copy of Cn such 

that u be the root vertex of Cn. Then 𝑑𝐺{𝐶𝑛} (u) = 

dG(u) + 2 and 𝑑𝐺{𝐶𝑛} (v) = 2. 

Case 3 If e = uv ∈ E(Cn) for some copy of Cn such 

that u,v are not root of Cn. Then 𝑑𝐺{𝐶𝑛} (u) = 𝑑𝐺{𝐶𝑛} 

(v) = 2. 

From the above cases, 

 

 

 

𝑀(𝐺{𝐶𝑛}, 𝑥, 𝑦) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺{𝐶𝑛})

𝑥𝑑𝐺{𝐶𝑛}(𝑢)𝑦𝑑𝐺{𝐶𝑛}(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)+2𝑦𝑑𝐺(𝑣)+2

+𝑛𝐺 ∑  

𝑒=𝑢𝑣∈𝐸(𝐶𝑛);  𝑢 is the root vertex of 𝐶𝑛

𝑥𝑑𝐺(𝑢)+2𝑦2

+𝑛𝐺 ∑  

𝑒=𝑢𝑣∈𝐸(𝐶𝑛);   𝑢,𝑣 are not root vertex of 𝐶𝑛

(𝑥𝑦)2

= (𝑥𝑦)2 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣) + 2 ∑ 𝑥𝑑𝐺(𝑢)+2𝑦2

𝑢∈𝑉(𝐺)

+ (𝑛 − 2)𝑛𝐺(𝑥𝑦)2

= (𝑥𝑦)2 [𝑀(𝐺, 𝑥, 𝑦) + 2 ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺)

+ 𝑛𝐺(𝑛 − 2)].    

 

         ∎ 

From Theorems 2.1 and 2.7, we get the following 

result:   

Corollary 2.6 The Nirmala index of 𝐺{𝐶𝑛} is: 

𝑁(𝐺{𝐶𝑛}) = ∑  𝑒=𝑢𝑣∈𝐸(𝐺) √𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 4 +

2[𝑛𝐺(𝑛 − 2) + ∑ √𝑑𝐺(𝑢) + 4𝑢∈𝑉(𝐺) ].  

∎ 

Theorem 2.8 Let G be any graph and Sn be the star 

graph, such that the center vertex of Sn be it’s root 

vertex. Then the M-Polynomial of the cluster graph 

G{Sn} is 

𝑀(𝐺{𝑆𝑛}, 𝑥, 𝑦)  =
 (𝑥𝑦)𝑛𝑀(𝐺, 𝑥, 𝑦)  +  𝑛𝑥𝑛𝑦 ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺)   

Proof: Let e = uv ∈ E(G{Sn}). Then 

Case 1 If e = uv ∈ E(G). Then 𝑑𝐺{𝑆𝑛}(u) = dG(u) + n 

and 𝑑𝐺{𝑆𝑛}(v) = dG(v) + n. 

Case 2 If e = uv ∈ E(Sn), for some copy of Sn such 

that u be the root vertex of Sn. Then 𝑑𝐺{𝑆𝑛}(u) = dG(u) 

+ n and 𝑑𝐺{𝑆𝑛}(v) = 1. 

From the above cases, 

 

 

𝑀(𝐺{𝑆𝑛}, 𝑥, 𝑦) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺{𝑆𝑛})

𝑥𝑑𝐺{𝑆𝑛}(𝑢)𝑦𝑑𝐺{𝑆𝑛}(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)+𝑛𝑦𝑑𝐺(𝑣)+𝑛 + ∑ 𝑥𝑑𝐺(𝑢)+𝑛(𝑛

𝑢∈𝑉(𝐺)

𝑦)

=  (𝑥𝑦)𝑛𝑀(𝐺, 𝑥, 𝑦)  +  𝑛𝑥𝑛𝑦 ∑ 𝑥𝑑𝐺(𝑢)

𝑢∈𝑉(𝐺)

.   

 

∎ 

 

From Theorems 2.1 and 2.8, we get the following 

result:   

Corollary 2.7 The Nirmala index of G{Sn} is: 
𝑁(𝐺{𝑆𝑛}) =

∑  𝑒=𝑢𝑣∈𝐸(𝐺) √𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) + 2𝑛   + 𝑛 ∑ √𝑑𝐺(𝑢) + 𝑛 + 1 .𝑢∈𝑉(𝐺)   

∎ 
Theorem 2.9 Let G1 and G2 be two graphs with vertex 

sets V (G1), V (G2), edge sets E (G1), E (G2), and 

orders n1, n2 respectively. Then the M-Polynomial of 

the join of G1 and G2 is 
𝑀(𝐺1 + 𝐺2, 𝑥, 𝑦)  = (𝑥𝑦)𝑛2𝑀(𝐺1, 𝑥, 𝑦) + (𝑥𝑦)𝑛1𝑀(𝐺2, 𝑥, 𝑦)

 +𝑥𝑛2𝑦𝑛1 ∑  𝑢∈𝑉(𝐺1)  ∑  𝑣∈𝑉(𝐺2)  𝑥𝑑𝐺1(𝑢)𝑦𝑑𝐺2(𝑣)  

Proof: Let 𝐺 = 𝐺1 + 𝐺2, and 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺). Then, 

Case 1 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺1) then 𝑑𝐺(𝑢) = 𝑑𝐺1
(𝑢) +

𝑛2 and 𝑑𝐺(𝑣) = 𝑑𝐺1
(𝑣) + 𝑛2, 

Case 2 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺2) then 𝑑𝐺(𝑢) = 𝑑𝐺2
(𝑢) +

𝑛1 and 𝑑𝐺(𝑣) = 𝑑𝐺2
(𝑣) + 𝑛1, 

Case 3 If 𝑒 = 𝑢𝑣 such that 𝑢 ∈ 𝑉(𝐺1) and 𝑣 ∈ 𝑉(𝐺2) 

then 𝑑𝐺(𝑢) = 𝑑𝐺1
(𝑢) + 𝑛2 and 𝑑𝐺(𝑣) = 𝑑𝐺2

(𝑣) +

𝑛1. 
From the above three cases, 
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𝑀(𝐺, 𝑥, 𝑦) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣) + ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣) + ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

𝑥𝑑𝐺1(𝑢)+𝑛2𝑦𝑑𝐺1(𝑣)+𝑛2 + ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

𝑥𝑑𝐺2(𝑢)+𝑛1𝑦𝑑𝐺2(𝑣)+𝑛1

+ ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

𝑥𝑑𝐺1(𝑢)+𝑛2𝑦𝑑𝐺2(𝑣)+𝑛1

= (𝑥𝑦)𝑛2𝑀(𝐺1, 𝑥, 𝑦) + (𝑥𝑦)𝑛1𝑀(𝐺2, 𝑥, 𝑦) + 𝑥𝑛2𝑦𝑛1 ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

𝑥𝑑𝐺1
(𝑢)𝑦𝑑𝐺2

(𝑣)  .

 

∎ 

 

From Theorems 2.1 and 2.9, we get the following 

result: 

Corollary 2.8 The Nirmala index of the join graph 

𝐺1 + 𝐺2 is: 

 

𝑁(𝐺1 + 𝐺2)  = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

 √𝑑𝐺1
(𝑢) + 𝑑𝐺1

(𝑣) + 2𝑛2 + ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

 √𝑑𝐺2
(𝑢) + 𝑑𝐺2

(𝑣) + 2𝑛1

 + ∑  

𝑢∈𝑉(𝐺1)

  ∑  

𝑣∈𝑉(𝐺2)

 √𝑑𝐺1
(𝑢) + 𝑑𝐺2

(𝑣) + 𝑛1 + 𝑛2  .

 

∎ 

Theorem 2.10 Let G1 and G2 be two graphs with 

vertex sets V (G1), V (G2), edge sets E (G1), E (G2), 

and orders n1, n2 respectively. Then the M-

Polynomial of the corona product of G1 and G2 is: 

𝑀(𝐺1 ⊙ 𝐺2, 𝑥, 𝑦)  = (𝑥𝑦)𝑛2𝑀(𝐺1, 𝑥, 𝑦) + 𝑛1𝑥𝑦𝑀(𝐺2, 𝑥, 𝑦)

 +𝑥𝑛2𝑦 ∑  𝑢∈𝑉(𝐺1)  ∑  𝑣∈𝑉(𝐺2)   𝑥𝑑𝐺1(𝑢)𝑦𝑑𝐺2(𝑣).
  

Proof: Let 𝐺 = 𝐺1 ⊙ 𝐺2, and 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺). Then 

there are the following cases, 

Case 1 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺1), then 𝑑𝐺(𝑢) = 𝑑𝐺1
(𝑢) +

𝑛2 and 𝑑𝐺(𝑣) = 𝑑𝐺1
(𝑣) + 𝑛2, 

Case 2 If 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐺2) for some copies of 𝐺2, 

then 𝑑𝐺(𝑢) = 𝑑𝐺2
(𝑢) + 1 and 𝑑𝐺(𝑣) = 𝑑𝐺2

(𝑣) + 1, 

Case 3 If 𝑒 = 𝑢𝑣 such that 𝑢 ∈ 𝑉(𝐺1), and 𝑣 ∈
𝑉(𝐺2) for some copies of 𝐺2, then 𝑑𝐺(𝑢) = 𝑑𝐺1

(𝑢) +

𝑛2 and 𝑑𝐺(𝑣) = 𝑑𝐺2
(𝑣) + 1. 

From the above three cases,  

 

     

𝑀(𝐺, 𝑥, 𝑦) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣) + 𝑛1 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣) + ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

𝑥𝑑𝐺(𝑢)𝑦𝑑𝐺(𝑣)

= ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

𝑥𝑑𝐺1(𝑢)+𝑛2𝑦𝑑𝐺2(𝑣)+𝑛2 +  𝑛1 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

𝑥𝑑𝐺2(𝑢)+1𝑦𝑑𝐺2(𝑣)+1

+ ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

𝑥𝑑𝐺1(𝑢)+𝑛2𝑦𝑑𝐺2(𝑣)+1

 

 = (𝑥𝑦)𝑛2 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

 𝑥𝑑𝐺1(𝑢)𝑦𝑑𝐺2(𝑣) + 𝑛1𝑥𝑦 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

 𝑥𝑑𝐺2(𝑢)𝑦𝑑𝐺2(𝑣)

 +𝑥𝑛2𝑦 ∑  

𝑢∈𝑉(𝐺1)

  ∑  

𝑣∈𝑉(𝐺2)

  𝑥𝑑𝐺1(𝑢)𝑦𝑑𝐺2(𝑣)

 = (𝑥𝑦)𝑛2𝑀(𝐺1, 𝑥, 𝑦) + 𝑛1𝑥𝑦𝑀(𝐺2, 𝑥, 𝑦) + 𝑥𝑛2𝑦 ∑  

𝑢∈𝑉(𝐺1)

  ∑  

𝑣∈𝑉(𝐺2)

 𝑥𝑑𝐺1
(𝑢)𝑦𝑑𝐺2

(𝑣) .

 

∎ 

 

From Theorems 2.1 and 2.10, we get the following 

result: 

Corollary 2.9 The Nirmala index of the corona graph 

G1 ⊙ G2 is: 
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𝑁(𝐺1 ⊙ 𝐺2) = ∑  

𝑒=𝑢𝑣∈𝐸(𝐺1)

√𝑑𝐺1
(𝑢) + 𝑑𝐺1

(𝑣) + 2𝑛2 + 𝑛1 ∑  

𝑒=𝑢𝑣∈𝐸(𝐺2)

√𝑑𝐺2
(𝑢) + 𝑑𝐺2

(𝑣) + 2

+ ∑  

𝑢∈𝑉(𝐺1)

∑  

𝑣∈𝑉(𝐺2)

√𝑑𝐺1
(𝑢) + 𝑑𝐺2

(𝑣) + 𝑛2 + 1 .

 

∎ 

Conclusions 
In conclusion, we studied the M-Polynomial and 

Nirmala index, in such away computing both 

concepts of some certain graphs. The exact 

computational formulas are presented of them. These 

theoretical results are proved. Our results could be 

beneficial to compute other topological indices for 

the same studied graphs.  
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 ومؤثر نيرمالا لبيانات مركبة محددة   Mمتعددة الحدود من النمط 
 1، اياد محمد رمضان 2، نبيل عزالدين عارف 1ئاكار حسن كريم

 قسم الرياضيات ، كلية العلوم ، جامعة السليمانية ، السليمانية ، العراق 1
 قسم الرياضيات ، كلية علوم الحاسوب والرياضيات , جامعة تكريت , تكريت ، العراق 2
 

 الملخص
واحددةا مددط متعددةةات الحددةوة المدمددة والجددة را ناريتمددام نددل نمريددة الييدداط الكيميانيددةح نددل يدد ا النحدد  قمنددا ناحتسدداب    Mمتعددةةا الحددةوة مددط الددنم  
ليياندات مركندة محدةةا اضدانة الدس احتسداب مدمار ن رمدار مدط ةدال متعدةةا الحدةوة المد كوراح واليياندات المركندة يد      Mمتعدةةا الحدةوة مدط الدنم  

 ح   حصلنا عل دا نل ي ا النح  مط ةال اجراء عمليات الرب  وكورونا والعنقوةية لييانات نسيطة مع نة
 


