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ABSTRACT 

The current paper modified method of conjugate gradient for solving 

problems of unconstrained optimization. The modified method 

convergence is achieved by assuming some hypotheses. The statistical 

results demonstrate that the modified method is efficient for solving 

problems of Unconstrained Nonlinear Optimization in comparison with 

methods FR and HS. 

 

1. Introduction 
Minimizing a given objective function is considered 

as a problem arising in many practical situations, 

where a real n-dimensional vector exists. The 

unconstrained case represents a significant class of 

practical problems. This is due to some reasons, 

including: firstly, many constrained problems can be 

easily converted to and solved by methods of 

unconstrained optimization. Secondly, solving 

unconstrained sub problems of many problems of 

optimization is necessary. The generic unconstrained 

optimization problem is defined by this equation: 

              )(  nRxxfMin  ….(1) 

Classes of the so called GD methods are among the 

most natural and widely used class of algorithms of 

iterative descent.  

Supposing that RRf n :  represents “a continuously 

differentiable function”, then examine the problem of 

unconstrained optimization assumed in the first 

equation. Overall, finding a universal Min of f  could 

be too ambitious [Bannas et al., 2006]. 

This paper only seeks the stationary points of f , i.e., 

the 
nRx *
 point satisfying 0)( * xg  to start. 

Suppose that nRx 
1

 is an initial estimation with

0)(
1
xg . For achieving progress, proceeding in a 

search direction  n

k
Rd    is required.  For example, 

the iterates can be updated in accordance with:  

 
1                   1 k k k kx x d k    …(2) 

It is known that how far proceeding is achieved in the 

k
d  direction is controlled by “ ,0

k
 ”. 

  To solve the problem of non-linear unconstrained 

optimization given in equation (1), where “

RRf n : ” is “a continuously differentiable 

function” constrained from below beginning with “an 

initial guess nRx  1
”, a sequence is generated by a 

CG method in accordance with (2) as well as 

generating the 
k

d  directions, in this way: 

1 1

1 1

                            

       

1

1 k k k k

k

k

d g

d g d 





 

  
 (3) 

There are several selections of 
k

  scalar (called 

“conjugacy parameter”), giving diverse 

implementation on “non-quadratic functions”; 

however, they are equal to “quadratic functions”. The 

CG algorithms contain a line search, which often 

depends on the conditions of strong or standard 

Wolfe [Andrei, 2007a]. These algorithms are required 

for ensuring convergence and for enhancing stability. 

They are defined by equations (2) and (3), where the 

k
  parameter is calculated using one of these ways: 

1 1 1 1  
                  (4)                                (5)

  

T T

T T

FR DYk k k k

k k k k

g g g g

g g d y
      

1 1 1 1  
                  (4)                                (5)

  

T T

T T

FR DYk k k k

k k k k

g g g g

g g d y
       
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HS1 1 1  
                   (6)                                  (7)

  

T T

T T

CD k k k k

k k k k

g g g y

g d d y
   

  

HS1 1 1  
                   (6)                                  (7)

  

T T

T T

CD k k k k

k k k k

g g g y

g d d y
   

   

LS1 1  
  

                     (8)                                (9)
  

T T

T T

PR k k k k

k k k k

g y g y

g g g d
     

LS1 1  
  

                     (8)                                (9)
  

T T

T T

PR k k k k

k k k k

g y g y

g g g d
      

Notice that these above algorithms could be 

categorized as algorithms with “
11

  
 k

T

k
gg ” in “the 

k
  

numerator” and “algorithms with 
k

T

k
yg   

1
 in the 

k


parameter numerator”. Fletcher and Reeves [1964] 

introduced the first algorithm of CG [(4) FR] for non-

linear function. Dai and Yuan [1999] proposed the 

method of DYCG, which is defined in (5); while 

Fletcher [1987] introduced the method of CD 

conjugate descent as defined in (6). The algorithm 

1 1

T

k kg g 
 in the 

k
  numerator has strong convergence 

theory, but all these methods are susceptible to 

jamming. Few steps are made by these methods 

without any significant advancement to the minimum 

[Kinsella, 2009]. However, new methods were 

proposed. For example, Hestenes and Stiefel [1952] 

suggested the (HSCG) method as defined in (7); 

Polak and Ribiere [1969] developed the (PRCG) 

method as described in (8); and the (LSCG) method 

derived by Liu and Story [1991] as described in (9). 

A feature of integrated restart is found in methods 

with “
k

T

k
yg   

1
” in “the parameter 

k
 numerator”. This 

feature addresses the jamming phenomenon. If “
k

s  

step” is small, “
k

y  factor” in “the 
k

  numerator” 

will tend to (0). So, “
k

 ” will be small and “the new 

1k
d  direction” in (3) is basically “SD direction

1


k
g

”. This means that “
k

 ” will be automatically 

adjusted by methods of “HS, PR and LS” to avoid 

jamming; adding to that the performance of these 

methods will be better than that of method with “

11
  

 k

T

k
gg ” in “the 

k
  numerator” [Dai and Yuan,  

2003]. 

In the analysis of convergence and implementation of 

method of conjugate gradient, “the exact and inexact 

line search” like conditions of Wolfe or “strong 

Wolfe conditions” is often required. The k  

parameter is found by “the Wolfe line search”, so that 

k

T

kkkkkk dgxfdxf   )()( ….(10) 

( )  T T

k k k k k kd g x d d g   ….(11) 

with .0    “The strong Wolf line search” is to 

find “ k ”, so that  

( ) ( ) T

k k k k k kf x d f x g d    ….(12) 

( )  T T

k k k k k kd g x d d g    ….(13) 

where 10    are constants [Li,  Z.  and 

Weijun, Z., 2008]. 

2. New conjugate gradient method: 
The Dai and Liao’s algorithm of “conjugate gradient” 

is among the best methods to solve the problem of 

“large scale nonlinear optimization”. 

As known, Perry in 1978 suggested this condition: 

“
1 1

T

k k kd g s   ”
 

(14) 

After that, Dai and Lia [2001] introduced the 

following condition of conjugacy: 

“
1 1

T T

k k k kd y tg s   ”
 

(15) 

Where 0t   is a scalar. 

For ensuring that the condition of conjugacy is 

satisfied by “the search direction 1kd  ” in (14), it is 

necessary to multiply (15) with ky  and utilize this 

new conjugacy condition (15). Hence, Dai and Liao 

obtained the following new formula for k  

1 1       
T T

k k k k
k T T

k k k k

g y g s
t

d y d y
   

….(16) 

In this case, in the vein of Dai and Liao’s [2001] 

formulas in (16), we also construct the following 

conjugate gradient formula.  
2

1 1 1 1

2

1

(g )
      

2

T T T
ZHH k k k k k k
k T TT

k k k kk k k

g g y s g
t

g g g gg y g
    



 


….(17) 

Where (0,1)t  , Assuming 
2

1 1

2

1

(g )
      

2

T T

k k k k

TT
k kk k k

y s g

g gg y g
  






 

Then, we have 

      ZHH FR

k t     

Therefore, the search direction for the new formula is  

1 1 d       ZHH

k k k kd g     …(18) 

Where 
ZHH

k  is defined in the equation (17) . 

Now, the new algorithms of “conjugate gradient” can 

be obtained, in this way: 

New Algorithm 

The first step: Initialization: choose 
nRx 1  and 

the 10 21    

parameters. Then, calculate “ )( 1xf ” and “ 1g ”; next, 

consider “
11 gd  ” and develop “the initial guess 

11 /1 g ”. 

The second step: Examine the iterations continuity. 

If “ 6

1 10

 kg ”, after that stop.  

The third step: “Line search”: calculate “ 01 k ” 

to satisfy “the Wolfe line search” conditions  in (12)  

&  (13), then update the “
kkkk dxx 1
” 

variables. 

The fourth step: “ k ” conjugate gradient 

parameter, which is defined in (17). 

The fifth step: computation of direction: calculate 

kkkk dgd   11
. When satisfying “the restart 

criterion of Powell 
2

11 2.0   kk

T

k ggg ”, then develop 
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“ 11   kk gd ”; if not, then define “ ddk 1 ”. Calculate 

“the initial guess
1 1                    / ,k k k kd d    ” then develop “

1 kk ” and continue with second step. 

3. The Descent Property of the new formula  
To show that “the search directions” of (18) are 

“descent directions”: 

3.1. Theorem 

Assume that the “line search” is satisfying “the 

conditions of Wolfe” in (12) and (13), then “ ” 

given by (18) is “a descent direction”. 

Proof 
The proof is by induction.  

1- If k=1 then  . 

2- Let the relation  for all . 

3- The relation is proved to be true when 1k k  ; 

by multiplying the equation (18) in 1kg  , we get: 

2

1 1 1 1
1 1 1 1 12

1

(g )
s   

2

T T T
T T Tk k k k k k
k k k k k kT TT

k k k kk k k

g g y s g
g d g g t g

g g g gg y g

   
    



 
     

  

 

1 1

T T

k k k kg y Ls g   

2

1 1 1 1
1 1 1 1 12

1 1

( )
s   

2

T T T
T T Tk k k k k k
k k k k k kT TT

k k k kk k k

g g Ls g s g
g d g g t g

g g g gLs g g

   
    

 

 
     

  

 

 

4

1 1 1 1
1 1 1 1 2

1 1

s ( )
  

2

T T T
T T k k k k k k
k k k k T T T

k k k k k k k

g g g Ls g
g d g g t

g g Ls g g g g

   
   

 

 
    
  
 

 

 

4

1 1
1 1 1 1 1 12

1 1 1 1

s ( )
  

2

T T
T T Tk k k k
k k k k k kT T T T

k k k k k k k k k

g Ls g
g d g g t g g

g g Ls g g g g g g

 
     

   

 
    
  
 

 

 

4

1 1
1 1 1 12

1 1 1 1

s ( )
1   

2

T T
T Tk k k k
k k k kT T T T

k k k k k k k k k

g Ls g
g d t g g

g g Ls g g g g g g

 
   

   

  
     
    

  

 

 

4

1 1

2

1 1 1 1

s ( )
1

2

T T

k k k k

T T T T
k k k k k k k k k

g Ls g
c t

g g Ls g g g g g g

 

   

  
    
    

  

 

2

1 1 1

T

k k kg d c g    ………….(19) 

The First Assumption 

Assume f  is bounded below in the level set “

 )()(: xfxfRxS n  ”. In some part N of “ ,S f

” is “continuously differentiable” and “its gradient” is 

Lipshitz continuos, there exist  0L , so that: 

Nyx,   )()(  yxLygxg ….(20) 

4. Global Convergence Property 
The convergence of suggested methods was studied 

by using “a uniformly convex function”. Then, there 

was a constant 0 , so that 

   
2

( ) ( )   , for any 
T

f x f y x y x y     Syx ,  

or equally 
2 2 2

   and    T T

k k k k k k ky s s s y s L s      ….(22) 

On the other hand, under Assumption (1), it is 

obvious that there are “positive constants B”, like  

“ SxBx   ,  ”  (23)
 

4.1 Proposition 

Under Assumption 1 and equation (23) on “ f ”, there 

is “a constant  0 ”, so that: 

“  )(  xf , Sx ” (24)
 

4.2 Lemma (1) 
Assume that assumption (1) and equation (23) were 

conducted. Examine any method of conjugate 

gradient in forms (2) & (3), where “ kd ” is “a descent 

direction” and “ k ” is obtained by “the strong Wolfe 

line search conditions”. If 


 


1

2

1

1

k kd

   
(25)

 

then we have 

 lim inf 0 .k
k

g


    (26)
 

More details can be found in [Dai.Y and Liao.L, 

2001] and [Tomizuka.H and Yabe. H, 2004]. 

4.3 Theorem 

Assume that Assumption (1) and equation (23) and 

the descent condition were conducted, consider the 

new algorithm (New), where  is calculated by 

“the conditions of Wolfe line search” (12) and (13). If 

the objective function is uniformly convex  on S, then 

. 0inflim 


k
k

g    

Proof 

1 1 s   ZHH

k k k kd g      

1 1 sZHH

k k k kd g      

2

1 1 1 1
1 1 2

1

(g )
s

2

T T T

k k k k k k
k k kT TT

k k k kk k k

g g y s g
d g t

g g g gg y g

   
 



 
     

  

 

2 2

1 11

1 1 2 2 2 2

1 1

(g )

2 g

T

k k k kk

k k kT

k k k k k k

y g sg
d g t s

g y g g g

 

 

 

 
   
 
 

 

2 2 2 2

1 1 1

1 1 2 2 2 2

1 12

k k k k k k

k k

k k k k k k

g s g y g s
d g t

g g y g g g

  

 

 

 
    

  

 

2 2 2 2

1 1

1 1 2 2 2

12

k k k k k

k k

k k k k k

g s g y s
d g t

g y g g g

 

 



 
    

  

 

2 2 2 2

1 1

1 12 2 2

1

1
2

k k k k k

k k

k k k k k

g s g y s
d t g

g y g g g

 

 



  
     

    

 

2 2 2 2

1 1

2 2 2

1

1
2

k k k k k

k k k k k

g s g y s
M t

g y g g g

 



  
     

    

 

1 1k kd M g   

1

2

k
d M 


  

 
2

1

2

2

1
k

d M 





 

 
22

L M   

1 2

1
k

d L



  

2

1 1

1 1
1

k kk
d L




 

  
….(27) 

   1kd

1 1
0Tg d  1 1

0d g  

0T

k k
g d  k

k



  
 

  
Tikrit Journal of Pure Science Vol. 24 (5) 2019 

 

89 

Therefore, we have 
1

lim 0
kk

g

  

5. Numerical results and comparisons  
This section compares the new CG method 

performance to another classical conjugate gradient 

method (FR and HS methods). The (75) large scale 

unconstrained optimization problem was selected for 

each test problem taken from [Andrei, 2008]. There 

are statistical results for each test function with the 

variables
 

number 100 ,..., 1000n  . The new 

algorithm is compared with the well-known FR and 

HS algorithms of conjugate gradient. All these 

algorithms were implemented with “strong Wolfe line 

search conditions” (12) & (13). The stopping criteria 

in all of these cases is 610kg . Writing of all codes 

was done using “doble precision FORTRAN 

Language with F77 default compiler settings”. The 

test functions usually begin a point standard. Initially, 

a summary of numerical results was recorded in the 

figures (1), (2), (3) . The performance profile 

presented by Dolan. E. D and J. J. Mor´e [2002] is 

used to display the performance of the new developed 

CG method of conjugate gradient algorithm in 

comparison to FR and HS algorithms. 750p   is 

defined as “the whole set of 
pn  test problems”; 

while 3S   refers to “the set of the interested 

solvers”. Suppose that “
,p sl ” is “the evaluations 

number of objective function”, which “solver s ” 

requires them for “problem p ”, then define the ratio 

of performance as 

,

, *

p s

p s

p

l
r

l


 
(28) 

Where “ *

,min{ : }p p sl l s S  ”. Obviously, 
, 1p sr    for 

all ,p s . When a problem is not solved by a solver, 

the 
,p sr  ratio is considered as a large number M . 

Each solver s  has a performance profile, which is 

defined below in the function of cumulative 

distribution for the ratio 
,p sr of performance,  

,{ : }
( ) p s

s

p

size p P r

n


 

 


 
(29) 

Obviously, (1)sp refers to the problems percentage 

for which solver s  is the best. The study of Dolan. 

E. D and J. J. Mor´e [2002] illustrates the 

performance profile in more details. It is possible to 

utilize this performance profile in analyzing the 

iterations number, the gradient evaluations number 

and the cpu time. In addition, for clear observation, 

“the horizontal coordinate” is given “a log-scale” as 

shown in these figures: 
 

 
Figure (1): Performance based on iteration 

 

 
Figure (2): Performance based on Function 

 

 
Figure (3): Performance based on Time 
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 تطوير طريقة جديدة للتدرج المترافق في الامثلية اللامقيدة
 4، منذر عبدالله خليل 3، هشام محمد عزام 2، حميد محمد صادق 1زياد محمد عبدالله

 ، تكريت ، العراق قسم علوم الحاسوب ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت 1
 ، الموصل ، العراق مديرية تربية نينوى  2
 ، الموصل ، العراق قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل 3
 ، تكريت ، العراق قسم علوم الحاسوب ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت  4
 

 الملخص
طريقة المطورة الجديد من خلال للتقارب الغير المقيد. تم تحقيق ال ملليةلحل مشاكل الاترافق ر طريقة جديدة للتدرج الميتطو في البحث الحالي تم 

 ق لـمقارنةً بالطر  ةالخطي مقيدة  غيرال مسائل الاملليةأن الطريقة المطورة الجديدة فعالة في حل  عدديةالفرضيات. توضح النتائج الافتراض بعض 
FR  وHS. 

 

 

 

 


