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ABSTRACT 

May R.M. gave the example of the family of cubic maps of the 

interval [ 1,1] . Rogers T. D. extends the analysis of May beyond that 

region . “ 

In this paper we are trying to introduce comprehensive study of the cubic 

family which defined in the form: 
3( ) (1 ) (1)f x x x      

The fixed points of the family are determined and described according to 

the values of the parameter   . Dynamical and chaotic behaviours of the 

family  discussed according to different definitions of chaos and via 

conjugacy .  

1. Introduction 
The word chaos in modern dictionaries, is defined as 

“total disorder and confusion”. [3] Edward Lorenz 

simplified chaos in short words “when the present 

determines the future , but the approximate present 

does  not approximately determine the future” . 

Chaos as an property is observed after a period of 

time which implies a system which could possibly 

display non-chaos as usual in the initial stages of 

iteration though highly and easily chaotic after a few 

iteration”. 

2.Fixed points. 
A point whose iterates are the same point is called a 

fixed point . In other words it’s not changed under the 

effect of the function motion , therefore fixed points 

very important in the study of the dynamics of 

functions. 

Definition. 2.1 [5],[1] 

Let “ p  be a point in the domain of  the function f  . 

Then  p  is called a fixed point of  f  if  ( )f p p . 

Graphically , the point p   is a fixed point of the 

function  f  if and only if “ the graph of  f  touches 

(or crosses) the line y x  at ( , )p p  . 

Definition. 2.2 [5] 

“Let p  be a fixed point of the function f .”The point  

p   is called attracting fixed point if there exists an 

interval ( , )p p    “such that if x  is in the 

domain of f “ and ( , )x p p     then [ ]( )nf x p  

as n  increases without bound , such a point also 

called asymptotically stable. i.e. “attracting fixed 

point “ attracts the iterates of the near points to itself 

in some interval. 

Definition. 2.3 [5] 

Let p  “be a fixed point of the function f .  The point 

p   is called repelling fixed point if there exist an 

interval ( , )p p    “such that if x  is in the 

domain of f   , ( , )x p p     and  x p  then  

( )f x p x p    .” i.e. it repeals the iterations of near 

points to some distance. 

3.Dynamical behaviour of the family 

Theorem 3.1 [5] 

“Suppose that f   is differentiable at a fixed point p . 

i. If ( ) 1f p   , then the point p  is  called attracting 

fixed point. 

ii. If ( ) 1f p   , then the point  p  is called repelling 

fixed point. 

iii. If ( ) 1f p   , then p  can be attracting , repelling , 

or neither. 

“To find fixed points of any function f  we just solve 

the equation ( )f x x . “ 

So , solving the equation 

( )f x x   

3 (1 )x x x     

“We obtain three fixed points” 

31 20 , 1 1x x and x   
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Now we investigate each of them in three cases. 

Case1. “ 0x    
3( ) (1 )f x x x      

/ 2( ) 3 (1 )f x x      

/ (0) 3 (0) (1 )f        

/ (0) 1f      

/ (0) 1f      “ 

Then if  2   or   0   that leads to make   

/ (0) 1f  
 which means that a fixed point 0x   is 

a repelling fixed point by theorem (3.1). 

If  0 2   that leads to make  / (0) 1f  
 which 

means that a fixed point 0x   is an attracting  fixed 

point by theorem (3.1). 

If  2    that leads to make / (0) 1f  
 and the 

theorem above doesn’t tell us anything about the 

fixed point, therefore we must use another criterion 

using Schwarzian derivative  which defined as 

follows :[3]” 
2

( ) 3 ( )
( )

( ) 2 ( )

f x f x
Sf x

f x f x

  
     

  

Since 0x   and 2    

  2( ) 3 (1 )f x x       

( ) 6f x x    

( ) 6f x   ” 

 
23

(0) (0) (0)
2

Sf f f   
 

         
 

23
6 6 (0)

2
   

 

12   

Since , (0) 0Sf    then a fixed point 0x   is 

attracting when  2   and it’s basin of attracting is 

0 ( 1,1)B     . 

Case2 . 1x    

(1) 2 1f     

/ (1) 2 1f   
 

so, if  0   or 1      / (1) 1f  
 which makes 

the fixed point 1x   is a repelling fixed point.  

But, if  1 0    then  / (1) 1f     which makes 

the fixed point 1x   is an attracting fixed point.  

If 1    then / (1) 1f  
 and since (1) 1f    we 

need to use Swarzian derivative again to determine 

the character of the point. 

Calculating the value of the derivative we obtain: 

(1) 48Sf     

Since 0Sf   then , the fixed point 1x    is 

attracting and the basin of attraction 
0 (0,1]B   . 

Case3. 1x     

We obtain that ( 1) 2 1f      , therefore the same 

discussion repeated as in case 2 . 

so, if  0   or 1      / (1) 1f  
 which makes 

the fixed point 1x    is a repelling fixed point.  

But, if  1 0    then  / (1) 1f  
  which makes the 

fixed point 1x    is an attracting fixed point.  

If 1    then / (1) 1f    and since (1) 1f    we 

need to use Swarzian derivative again to determine 

the character of the point. 

Calculating the value of the derivative we obtain: 

(1) 48Sf     

Since 0Sf   then , the fixed point 1x     is 

attracting and the basin of attracting 
0 [ 1,0)B    . 

4. Chaotic behaviour of the family 

Definition . 4.1 [3],[5],[2] 

Let J  be a bounded interval, and  :f J J  

continuously differentiable on J , then  ( )x  which  

defined as follows: 

  /1
( ) lim ln ( ) ( )

n

x
x f x

n





 , is called Lyapunov 

exponent of f  . 

Definition . 4.2  [5]” 

Let J  be an interval , and suppose that :f J J  . 

Then f  has sensitive dependence on initial 

conditions at x  if , there exist 0   such that for 

each 0   , there is y J  and n   such that 

[ ] [ ]( ) ( )n nx y and f x f y       “ 

Definition . 4.3   
We will use the next formula to calculate Lyapunov 

exponent [5] 
1

/

0

1
( ) lim ln ( )

n

x
k

x f x
n







 
 then we obtain  

1
2

0

1
( ) lim ln 3 (1 )

n

x
k

x x
n

 





  
 

( ) 0x    

Definition . 4.4  [5] 

A function “ f  is said to be chaotic if it is satisfied at 

least one of the following conditions: 

i. f  has positive Lyapunov exponent at each point 

in it’s domain. “ 

ii. f  has sensitive dependence on initial conditions 

on it’s domain. 

Then , the cubic family is chaotic by Guilick 

definition of chaos since it has positive Lyapuniv 

exponent . 

5. Conjugacy 

In some cases , it’s difficult to show if one function 

has  features as transitivity or existence of a dense set 

of periodic points and it’s easer to find other function 

which has these features and conjugate to our 

function , specially existence of period - 3 points for 

the cubic family will give an important clue about the 

chaotic behaviour of the family, but to find out such 
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points is not as easy [10]. If two functions are 

conjugate to one another, then one function inherits 

such properties as “transitivity and the existence of a 

dense set of periodic points from the other one.” 

Definition. 5.1 [2],[5],[7] 

Let J  and K  be intervals ,  and suppose that 

:f J J   and  :g K K . then f  and g  are 

conjugate if there exist a homeomorphism 

:h J K  such that h f g h  and in this case 

we write 

h
f g

 . “ 

Theorem. 5.2  Suppose :[ , ]f a b    is a continuous 

map.  If f   has an orbit of period - 3, then  f   is 

chaotic. [7] 

Theorem. 5.3  If : :f X X and g Y Y   are 

conjugate maps via conjugacy h  , then f   is chaotic 

iff g  is chaotic. [4] “ 

Let g  be defined as follows: “ 

1
3 , 0

3

1 2
( ) 2 3 ,

3 3

2
3 2 , 1

3

x x

g x x x

x x


 




   



  


 

We’ll show that 

h
f g  in case if 4   , i.e.  

3( ) 4 3f x x x     and ( ) cos( )h x x . 

Since ( ) cos(3 )f h x x  

And  ( ) cos(3 )h g x x  

Then ( ) ( )f h x h g x  

To show that f  has perid-3 point   

let 2

7
x    ,  then 2 6 4

, ,
7 7 7

 
 
 

 a 3-cycle for g  . 

Then g  has a periodic orbit [5] and therefore it is 

chaotic by theorem 5.2 . 

So  the cubic function f  is chaotic by theorem 5.3 
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 السلوك الديناميكي لعائلة الدوال التكعيبية
 مرتضى محمد جاسم ، مزعل حمد ذاوي العبيدي

 ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق قسم الرياضيات
 

 الملخص
]مثالا لعائلة الدوال التكعيبية على الفترة  .May R.Mلقد قدم  1,1]  وقام ،Rogers T. D.  على فترة أكبر.بتوسيع تحليل ماي 

)3التكعيبية المعرفة بالشكل:نقدم في هذه الورقة دراسة شاملة لعائلة الدوال  ) (1 )f x x x     حيث تم ايجاد النقاط الثابتة للعائلة وتم وصفها .
 . كما تم مناقشة السلوك الديناميكي والفوضوي للعائلة نسبة الى مختلف تعاريف الفوضى ومن خلال الدالة المرافقة. لقيم مختلفة للمعلمة 

 


