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ABSTRACT 

In linear regression model, the biased estimation is one of the most 

commonly used methods to reduce the effect of the multicollinearity. In 

this paper, a simulation study is performed to compare the relative 

efficiency of some kinds of biased estimators as well as for twelve 

proposed estimated ridge parameter (k) which are given in the literature. 

We propose some new adjustments to estimate the ridge parameter. 

Finally, we consider a real data set in economics to illustrate the results 

based on the estimated mean squared error (MSE) criterion. 
According to the results, all the proposed estimators of (k) are superior 

to ordinary least squared estimator (OLS), and the superiority among 

them based on minimum MSE matrix will change according to the 

sample under consideration. 

 

1. Introduction 
Let 

y X     ….(1.1) 

be the multiple linear regression model, where y  is an 

(n  1) vector of responses, X is an (n  p) design 

matrix of the explanatory variables, p is the number 

of the explanatory variables , β is a (p  1) vector of 

unknown parameters of interest, ε is an (n × 1) vector 

of residuals that follow the standard assumptions, 

namely, ( ) 0E   and 
' 2( ) nE I    . nI  is an 

identity matrix of order n. 

The OLS of 𝛽 is the best linear unbiased estimator 

(BLUE) which is given by 

𝛽̂OLS = (𝑋′𝑋)−1𝑋′𝑦  …(1.2) 

The most important assumption in multiple linear 

regression model, the explanatory variables must be 

considered as independent of each other. But, 

practically, there are probably linear dependencies 

between these variable values. Mainly, this problem 

could appear in econometric data and it's called 

multicollinearity. Multicollinearity influences the 

regression analysis extremely and it is one of the 

main problems. The existence of multicollinearity 

makes the estimates of the correlation coefficients 

large and very large sampling variances of the OLS 

estimated Lukman et al.[1]. To overcome this 

problem, there are various methods have been 

mentioned in literature and one of them is by using 

the biased estimators. The common biased estimation 

method is the ridge regression which was proposed 

by Hoerl and Kennard [2] and still the researchers 

working in this area like Kibria, and Banik [3]. They 

suggested using the ordinary ridge regression (ORR) 

as bellow: 

𝛽̂R = (𝑋′𝑋 + 𝑘𝐼p)−1𝑋′𝑦 , ….(1.3) 

where k is the ridge parameter and  the value of  

0k  .The ORR estimator is biased to a certain 

value of k which is unknown and therefore it  should 

be estimated from real data. 

A number of ways for obtaining biased estimates of β 

with smaller MSE have been developed. By 

extending Hoerl and Kennard's model, Crouse et al.  

[4]
 

defined the unbiased ridge regression (URR) 

estimator as follows: 

𝛽̂(𝑘𝐼, 𝐽) = (𝑋′𝑋 + 𝑘𝐼p)−1(𝑋′𝑦 + 𝑘𝐽),  …(1.4) 

where 𝐽 is a random vector with 𝐽~𝑁(𝛽, (𝜎2/𝑘)𝐼). 

Battah and Gore [5]
 
proposed a modified unbiased 

ridge regression (MURR) estimator of β and still the 

researchers who work in this area like Lukman et 

al.[6]and Tarima et al. [7] which is denoted as below: 

𝛽̂J(k) = [𝐼 − 𝑘(𝑋′𝑋 + 𝑘𝐼p)−1](𝑋′𝑋 + 𝑘𝐼p)−1(𝑋′𝑦 +
𝑘𝐽) … (1.5) 

http://tjps.tu.edu.iq/index.php/j
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the ORR and URR estimators have been combined to 

obtain the MURR which was driven from ORR by 

using URR rather than OLS . 

The two- parameter estimator (TPE)  proposed by 

Ozkale and Kacıranlar [8]
 
and still the researchers 

working in this area like Asar, and Genç [9]. which is 

denoted as follows:  

𝛽̂(k , d) = (𝑋′𝑋 + 𝑘𝐼p)−1(𝑋′𝑦 + 𝑘𝑑𝛽̂OLS) = 𝐹kd𝛽̂OLS  

….(1.6) 

where  𝐹kd = (𝑋′𝑋 + 𝑘𝐼p)−1(𝑋′𝑋 + 𝑘𝑑𝐼), 0k  and 

d is shrinkage parametar such that 0 1.d   

To simplify the considerations about the linear model, 

the canonical form is often used. Therefore, a 

symmetric matrix S = X′X has an eigenvalue–

eigenvector decomposition of the form S = TΛT′, 

where T is an orthogonal matrix and Λ is a real 

diagonal matrix. The diagonal elements of Λ are the 

eigenvalues of S and the column vectors of T are the 

eigenvectors of S. The orthogonal version of the 

regression model in (1-1) is 

𝑦 = 𝑋𝑇𝑇′𝛽 + 𝜀 = 𝑍𝛾 + 𝜀    …(1.7) 

where Z = XT, γ = T ′β and Z′Z = Λ=dig(
1 2, ,..., p   ). 

The OLS estimator of γ is given by 

 𝛾OLS = (𝑍′𝑍)−1𝑍′𝑦 = Λ−1𝑍 ,  …(1.8) 

The goal of this paper is to compare the different 

biased estimators as well as with different estimated 

value of k using the MSE as a measure of goodness 

of fit. 

The paper is organized as follows. In Section 2, we 

present the methodology of different estimators of k 

and propose some new estimators. A Monte Carlo 

simulation has been given in Section 3. The 

discussions of the results of the simulation are given 

in Section 4. Finally, in Section 5, a real data set as an 

application of this study is given.  

2. Estimation of Ridge Parameter  
Hoerl and Kennard [2] showed the properties of ORR 

in detail. They concluded that the total variance 

decreases and the squared bias increases as k 

increases. The variance function is monotonically 

decreasing and the squared bias function is 

monotonically increasing. That means, there is a 

chance that some k exists such that the MSE for ORR 

is less than MSE for the OLS. 

It is well known that k is unknown and estimated 

from the sample of the study.  For this reason, there 

are many articles proposed different ridge parameters 

in the literature using different techniques. Recently, 

many researchers studied this area and proposed 

different estimates of k. We review available methods 

in literatures to estimate the value of k as follows: 

- Hoerl and Kennard [2] suggested k to be (denoted 

here by ˆ
HKk ) 

max

2

2

ˆˆ ,
ˆ

HK

OLS

k



  ….(2.1) 

where 
2

2 1
ˆ

ˆ

n

ii
e

n p
 



  and 
max

ˆ
OLS is the maximum 

element of 
ÔLS  

- Hoerl et al. [10] proposed k to be (denoted here by 
ˆ

HKBk ) 

2ˆˆ ,
ˆ ˆ

HKB

OLS OLS

p
k



 



 …. (2.2) 

- Lawless and Wang [11] suggested k to be 

(denoted here by ˆ
LWk  ) 

2ˆˆ ,
ˆ ˆ'

LW

OLS OLS

p
k

X X



 


  ….(2.3) 

- Hocking et al. [12] suggested k to be(denoted here 

by( ˆ
HSLk ) 

2

2 1

2

2

1

ˆ( )
ˆ ˆ ,

ˆ

i

i

P

i OLS

i
HSL

P

i OLS

i

k

 



 






 
 
 





…(2.4) 

where ˆ
i OLS  is the i

th
 element of ÔLS  

- Nomura [13] suggested k to be (denoted by ˆ
HMOk ) 

2

1
2 2

2

2
1

ˆˆ ,

ˆ
ˆ 1 1

ˆ
i

i

HMO

p
OLS

OLS i

i

p
k




 




  

   
      

     



 ….(2.5) 

where i  is the i
th

 eigenvalues. 

- Kibria [14] proposed the following estimators for k 

based on arithmetic mean (AM), geometric mean 

(GM), and median of 2 2ˆˆ
i   . These are defined as 

follows: 

The estimator based on AM (denoted by ˆ
AMk ) 

2

2
1

ˆ1ˆ
ˆ

i

p

AM

i OLS

k
p





    ….(2.6) 

The estimator based on GM (denoted by ˆ
GMk ) 

2

1

2

1

ˆˆ

ˆ( )
i

GM P

P
OLS

i

k









  …..(2.7) 

The estimator based on median (denoted by ˆ
MEDk  ) 

2

2

ˆˆ ,
ˆ

i

MED

OLS

k Median




  
  

  

      i=1,2,…,p  …(2.8) 

- Based on modification of ˆ
HKk , Khalaf and 

Shukur [15] suggested k to be 

            (denoted by ˆ
KSk  ) 

max

2

max

2 2

max

ˆˆ
ˆˆ( )

KS

OLS

k
n p

 

  


 
 …..(2.9) 

where 
max  is the maximum eigenvalue of the matrix 

X'X. 

- Following Kibria  [14] and Khalaf and Shukur 

[15], Alkhamisi et al. [16] proposed the following 

three estimators of k: 
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2

2 2
1

ˆ1ˆ
ˆˆ( )

i

p
KS i
arith

i i OLS

k
p n p

 

  


 

   …(2.10) 

2 2

max
2 2

ˆ
max      i=1,...,p

ˆˆ( )
i

KS

i

i OLS

k
n p

 

  

  
  

   

   …(2.11) 

2

2 2

ˆ
      i=1,...,p

ˆˆ( )
i

KS

i
md

i OLS

k median
n p

 

  

  
  

   

 …(2.12) 

Now, we propose some new methods based as 

follows: 

2

1
1

max

ˆ
ˆ

i

p

med OLS

i
MUk

 





  …(2.13) 

2 2

2

ˆ ˆˆ
ˆ ˆ ˆ ˆ'

MU

OLS OLS OLS OLS

p p
k

X X

 

   
 

 
…. (2.14) 

2

min

1
3 2

ˆ
ˆ min

ˆ

i

p

OLS

i
MUk

 




 
 
 
 
 
 


   …(2.15) 

2

min

1
4 2

ˆ
ˆ max

ˆ

i

p

OLS

i
MUk

 




 
 
 
 
 
 


 …(2.16) 

2

min

1
5

2

ˆ
ˆ max

ˆ

i

p

OLS

i
MUk

 





 
 
 
 
 
 


  ….(2.17) 

3. A simulation study 
The aim of the current study is to perform a 

comparison of different biased estimators for variate 

estimates of ridge parameter which are given in (2.1-

2.17) and identify some good estimators for 

practitioners. We conduct a simulation study using 

Matlab. This simulation has been designed depends 

on specific factors that are expected to influence the 

properties of estimators which be subjected to a 

statistical investigation Lukman et al.[17]. Since the 

degree of the collinearity among several explanatory 

variables (Xs) is very essential, Kibria [14] was 

followed to generate X's using the following equation: 

 
1

2 21 ,  i=1,2,...,n,j=1,2,...,p,ij ij ipX z z    …(3.1) 

where the zij independent standard normal pseudo-

random numbers and 𝜑 represents the correlation 

between any two X's. These various are standardized 

so that X'X is being in correlation forms. The 

response variable y is considered by  

1 1 2 2 ... ,    i=1,2,...,n  ,i i i p ip iy X X X e        …(3.2) 

where the ei is i.i.d. N(0, σ
2
). Therefore, zero intercept 

for (3.2) will be assumed. Also the number of 

explanatory variables 5p  , while the values of   

are chose as (1, 5, 10, 20). The correlation φ will 

choose as (0.75, 0.85, 0.90, 0.95) and sample size 

n=(50, 100, 150) .The coefficients β1, β2, …, βp  are 

selected as  the eigenvectors corresponding to the 

largest eigenvalue of the matrix X'X subject to 

constraint β'β = 1. Thus, for n, p, β, λ, φ, and σ, sets of 

Xs are created. Then the experiment was re-

preformed 10000 times by creating new error terms. 

The estimated MSE for each estimator is calculated 

as follows:  
10000

* * *

1

1
( ) ( ) ( ),

10000 i

mse     


   … (3.3) 

where 
*  would be any of the estimators (OLS, 

ORR, MURR, or TPE). 

4. The discussion of simulation results  
In this section we present the results of our Monte 

Carlo experiment concerning the properties of the 

different methods used to choose the ridge parameter 

K, when multicollinearity among the columns of the 

design matrix of the explanatory variables exist. The 

simulation results are presented in Tables 1–12 and 

we will discuss the results by dividing the results in 

three parts: 

4-1 The simulation results according to the 

different estimators 
Table (4-1) shows an explanation of the preference of 

the estimators mentioned in this paper, where we can 

observe the following: 

1- The MURR estimator is the  best estimator that 

has the lowest MSE compared to the rest of the 

estimators in different sample sizes in all correlations 

and 𝜎 . This is what we note in Table (4-1) as well as 

Tables (1-12) attached in this paper. 

2- In case (n=50, 𝜎 = 1 , φ =0.75, 0.90) and  (n=100, 

150 , 𝜎 = 1  , φ =0.85)  the ORR estimator is better 

than others which can give us an indicator for using it 

instead of MURR in case we need that. 
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Table 4-1: The simulation results according to the best estimators in each case 
Table n   φ Best estimator Table n   φ Best estimator 

1-4 50 1 0.75 ORR 8-12 150 1 0.75 MURR 

0.85 MURR 0.85 ORR 

0.90 ORR 0.90 MURR 

0.95 MURR 0.95 MURR 

5 0.75 MURR 5 0.75 MURR 

0.85 MURR 0.85 MURR 

0.90 MURR 0.90 MURR 

0.95 MURR 0.95 MURR 

10 0.75 MURR 10 0.75 MURR 

0.85 MURR 0.85 MURR 

0.90 MURR 0.90 MURR 

0.95 MURR 0.95 MURR 

20 0.75 MURR 20 0.75 MURR 

0.85 MURR 0.85 MURR 

0.90 MURR 0.90 MURR 

0.95 MURR 0.95 MURR 

4-8 100 1 0.75 MURR  

0.85 ORR 

0.90 MURR 

0.95 MURR 

5 0.75 MURR 

0.85 MURR 

0.90 MURR 

0.95 MURR 

10 0.75 MURR 

0.85 MURR 

0.90 MURR 

0.95 MURR 

20 0.75 MURR 

0.85 MURR 

0.90 MURR 

0.95 MURR 

 

4-2 The simulation results according to the 

different estimated ridge parameter 

In order to know the preference of the estimated ridge 

parameter that mentioned in this paper, Tables (4-2 to 

4-5) show an explanation that, where we can observe 

the following: 

1- By increasing the sample size, we observe others 

estimated of ridge parameter which gives lowest 

MSE and still MED, HKB, and LW give well 

performance as we observed in Table (4-2). 

2- From Tables( (4-3 ) to (4-5)) and Tables (1-12), 

the proposed estimated ridge parameter (MU1-MU5) 

are working well compared to other estimated ridge 

parameter, especially with MURR estimator and this 

is the case  for all situations  as well as it compared 

with OLS estimator. 

3- From Tables( (4-3) to (4-5)) in general we 

observe that all estimated ridge parameter working 

well with MURR estimator which is the best 

estimator according to this study, that means we can 

use any one of them to find the MURR estimator. 
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Table 4-2   The simulation results according to the different estimated ridge parameter 
Table n   φ Best estimator 

of k 

Table n   φ Best estimator 

of k 

1-5 50 1 0.75 GM 10-15 150 1 0.75 HKB 

0.85 HKB 0.85 MU3 

0.90 HKB 0.90 MED 

0.95 GM 0.95 MU2 

5 0.75 MED 5 0.75 LW 

0.85 MED 0.85 MU5 

0.90 MU2 0.90 HMO 

0.95 GM 0.95 MU5 

10 0.75 MED 10 0.75 HSL 

0.85 AM 0.85 GM 

0.90 MU4 0.90 AM 

0.95 HMO 0.95 MU5 

20 0.75 MU4 20 0.75 MU2 

0.85 AM 0.85 GM 

0.90 AM 0.90 MED 

0.95 MU4 0.95 MU3 

5-10 100 1 0.75 LW  

0.85 HKB 

0.90 HKB 

0.95 GM 

5 0.75 HK 

0.85 LW 

0.90 LW 

0.95 MU2 

10 0.75 MU3 

0.85 LW 

0.90 GM 

0.95 HK 

20 0.75 AM 

0.85 MU4 

0.90 AM 

0.95 MED 
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5.  A numerical example  
Real Life Application 

In order to give more explanation for the study, we 

consider the data set in economics on total national 

research and development expenditures as a percent 

of gross national product originally due to Gruber 

[18] and later by Akdeniz and Erol [19], among 

others. This reflects the relationship between the 

dependent Y variable the percentage expended by the 

United States and the other four independent X1 , X2,  

X3, and X4 variables. The vector X1 reflects the 

amount that France spent, X2 that West Germany 

spent, X3 that Japan spent, and X4 that the former 

Soviet Union spent on. 

The goal is to compare the traces of the estimated 

MSE matrices of (ORR), (MURR) and (TPE). The 

trace of the MSE matrix of the (ORR) is given by 
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mse( ˆ
R )=tr(MSE( ˆ ,R  ))=

 

2 2 2

2
1

i

p
i

i i

k

k

  






 ,  …(5.1) 

the trace of the MSE matrix of the (MURR) is given 

by 

mse( ˆ ( )J k )=tr(MSE( ˆ ( ),J k  ))=

 

 

2 2 2

3
1

i

p
i i

i i

k k

k

   



 


 , …(5.2) 

the trace of the MSE matrix of the (TPE) is given by 

mse( ˆ( , )k d )=tr(MSE( ˆ( , ),k d  ))=

 

   

22 2 2

2 2
1

(( 1 ) )

1

i

p
i i i

i i i

d k d k

k

    

 

    

 
 , …(5.3) 

we are substituting β and 
2  by their OLS estimates 

̂  and
2̂ respectively. For the standardized data 

since there are ten observations and four parameters, 

we obtain𝜎̂2 = 0.003932. The four eigenvalues of X' 

X are 2.95743, 0.91272, 0.10984, and 0.02021. The 

factors will define a 4-dimensional space and the 𝑋′𝑋 

matrix will be as follows: 

𝑋′𝑋 = [

1.000
0.888
0.925
0.309

 

0.888
1.000
0.962
0.157

 

. 925
0.962
1.000
0.328

 

0.309
0.157
0.328
1.000

]  

We can observe that the variables in   𝑋′𝑋  matrix 

suffer for high correlations among them and this is 

the one   advantage of standardizing the X matrix 

where it can be seen which variables are highly 

correlated. Another method for diagnosing 

multicollinearity in linear regression, is the Condition 

Index (C.I.)  which is defined as follows: 

𝐶. 𝐼. = √
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
, 

where 𝜆𝑚𝑎𝑥   and  𝜆𝑚𝑖𝑛 are the  largest and  the  

smallest eigenvalues of X' X , if C.I. ≤ 10 , then there 

is no multicollinearity among the explanatory 

variables, if 10 < C.I. < 30, then the multicollinearity 

is moderate, but if C.I .≥ 30, then it means that there 

is a severe multicollinearity that must be corrected. 

So in this example  , 10 < 𝐶. 𝐼. = √
2.95743

0.02021
= 12.1 < 30 , 

which indicates that there is a moderate 

multicollinearity and may be corrected. 
 

Table (5-1): The scaler mean squares error for different estimators and different estimated ridge 

parameter 

 HK HKB LW HSL HMO AM GM MED KS 

OLS 0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  

ORR 0.1166  0.1140  0.1213  0.1321  0.1591  0.2963  0.1356  0.1137  0.1310  

MURR 0.0880  0.0876  0.0910  0.1006  0.1503  0.2950  0.1227  0.0879  0.0996  

TPE 0.1565  0.1618  0.1518  0.1464  0.2270  0.3338  0.2045  0.1631  0.1467  

 KS arith KS max KS md MU1 MU2 MU3 MU4 MU5  

OLS 0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  0.2361  

ORR 0.1180  0.1771  0.1352  0.1603  0.1468  0.3018  0.3230  0.1556  

MURR 0.0990  0.1703  0.1037  0.1516  0.1162  0.3006  0.3221  0.1462  

TPE 0.1814  0.2420  0.1454  0.2280  0.1427  0.3385  0.3572  0.2239  
 

From Table (5-1), we can observe that,  the minimum  

mse for the ORR estimator will be got  if k is 

estimated by HKB. Also the minimum mse for the 

MURR estimator will be given by estimating k by 

HKB while the minimum mse for the TPE estimator 

will be given by estimating k by MU2. The 

performance of the estimated k that given in this 

study is showing that under moderate degree of 

multicollinearity, the most of them give minimum  

mse if they used in the MURR estimator except (AM, 

MU3 and MU4) where the OLS estimator is better 

than of them. Therefore, not all proposed ridge 

parameter can be used to get minimum mse when the 

degree of multicollinearity is moderate.  

Finally,  we can say that, this study gives us a broad 

view on the behaviour of the estimators and when 

they can be used to give a good performance 

compared to the other suggested estimators.
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 الخطي الانحدار نموذج في الحرف انحدار تقديرات أنواع بعض دراسة
 مصطفى اسماعيل نايف، مصطفى ناظم لطيف 

 ، الانبار ، العراق كلية التربية للعلوم الصرفة , جامعة الانبار قسم الرياضيات ,
 

 الملخص
 الانحدار نماذج في المعلمات تقدير على الخطية تعدد العلاقات مشكلة تأثير لتقليل شيوعًا المستخدمة الأساليب أكثر أحد المتحيز التقدير يعد

 معلمة اثنا عشر إلى بالإضافة المقدرات المتحيزة  أنواع لبعض النسبية الكفاءة لدراسة محاكاة دراسة إجراء تم ،هذا البحث في. المتعددة الخطي
 تم استخدام  ، أخيرًا(. k) الحرفلمعامل  مقدرة معلمة لتقدير الجديدةالانواع  بعضتم اقتراح . البحوث في مذكورة( k) لمعامل الحرف مقترحة مقدرة

 من أفضل( k) لـالمقدرات المقترحة  جميع فإن للنتائج، وفقًا .المقدر الخطألمتوسط  معيار إلى استنادًا النتائج لتوضيح حقيقية بيانات مجموعة
ر ر ضمان يوجد لا ولكن ،(LSE) بطريقة المربعات الصغرى  المُقد ِّ ر الأفضل الاختيار وسيتوقف ،"الأمثل" للمُقد ِّ  .الدراسة الشروط على للمُقد ِّ


