Tikrit Journal of Pure Science Vol. 25 (5) 2020

IAS]

= Tikrit Journal of Pure Science
L NaRY “/ ISSN: 1813 — 1662 (Print) --- E-ISSN: 2415 — 1726 (Online)

=\ ——

Gt el | e 2 IS 2 ot ek |

Journal Homepage: http://tjps.tu.edu.ig/index.php/j

Estimation the Variogram Function Indicator which represent the
Transmissivity Coefficient in the groundwater
Seerwan Sulieman Noon

Nineveh Governorate Education Directorate
https://doi.org/10.25130/tjps.v25i5.299

ARTICLE INFO.
Article history:

-Received: 23/1/2020
-Accepted: 13/7 /2020
-Available online: / /2020

Keywords: Rigionalized variable ,

variogram function Indicator,
Weights vector, Covariance
function.

Corresponding Author:
Name: Seerwan Sulieman Noon

E-mail: serwannoon@yahoo.com
Tel:

Introduction

Many statisticians prefer to name the estimation of
the variogram function Indicator at certain locations
by the prediction process to distinguish it from the
word estimate for the parameters in a particular
probability distribution, and that the word estimation
has been widely used by geostatistics researchers in
the study of the spatial random process [1]. In
developed countries, estimation of the variocram
function Indicator has become a priority in protecting
and cleaning the environment.

Estimating and reconciling variogram are critical
stages in estimating or spatial prediction, when a
spatial prediction is performed to obtain a prediction
in locations to be predicted in a spatial phenomenon
that may be minerals, groundwater, plants, or
contamination of the environment or a satisfactory
environment, the estimation of the variogram
function must be conducted in a careful manner from
a lesser estimation error or the prediction results will
be in accurate and unreliable.

The experimental (approximate) variogram function
that measures spatial continuity with in this work is
used to make spatial predictions. In order to calculate
these spatial predictions, we have an effective
theoretical model (variogram) to fit the experimental
variogram function we obtain from the diagram. For
this purpose, we should know model variogram
theoretical indicator (real) as a synthesis written in
small groups of approved (authorized functions)

ABSTRACT

The problem tackled in this paper is the estimation of variogram

function Indicator of spatial stochastic process for the Levels of
groundwater, by the method of weighted Least squares. This methods is
well known in regression analysis in estimating the coefficient of ression
model. After defining the indicator variable the parameters of Indicator
variogram estimated based on mean squares error. The final formula of
weighted least squares estimator can be not be solved exactly, then
through the use of iterative Newten - Raphson algorithm and for some
iterations the convergence of solution is obtained with certain
termination criterion or number of repeats (that used in this paper).

l.e, dependable meaning, for example (joke effect,
Exponential model, spherical model, Gaussian
model) see table (1) shown in the appendix (A) with
positive equations and each basic structure of these
functions depends on a limited number of parameters
eg. jokes effect, Sill, Isotropic, non - uniform
properties, and as soon aswe know the basic
formulations and all parameters will be possible
to determine the appropriate theoretical model
compared variogram Indicator by drawing and
estimating model parameters theory by ordinary least
squares ( OLS) and generalized least squares (GLS
)[2]. By moving spatial statistics as in time series [3].,
Shows that the composite model differs in different
directions across the data perspective .The weighted
least squares method would be best to obtain an
optimal estimator for the Variogram function
Indicator [4.5.6]. This research included two parts,
where the part one contains the theoretical aspect of
the research in terms of formulating the question of
appreciation Formulation of estimation problem by
weighted least squares .The second part contains the
applied side of the research, the results were
encouraging as the Gaussian and spherical models
were used on these data The aim of this research is to
estimate the variogram function Indicator by the least

squares method estimated weighted Indicator
variogram data onwater tanker factories in
groundwater in Bashiga /Nineveh  Governorate/
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Northern Irag. Finally, all the algorithms are
programmed into the search using the Matlab system.
Section I

Estimation by Generalized least Squares (GLS)
1-1- Indicator Variable:

The pointer variable is often referred to only as the
pointer in the spatial statistics literature and is
essentially a binary variable and takes values 1 and 0
Just . these variables typically represent the presence
or absence of a particular attribute (or feature) in the
region consideration. For example, in the mining
phenomenon we know the variable is equal 1 when
there is a metal and O In the absence of the metal .
and now we can know the indicator b (x) ,From the
constant variable Z (x) , Simply equal to 1, if :which
means , Less from the b(x) indicator or equal to a
Specified Threshold Z¢ and (0) otherwise

b(x)=[ 1 ifZx)=Z;,xeDcRP ]

0 otherwise

X is location within the study area/R is Euclid's space
/ P=2 tow dimensions or P=3 three dimensions / D a
field or area under study .

By defining the indicator we have divided the
measurement of the spatial variable Z (x) Into two
sections the first The Z (X)<Zc And the other
section Z (x)> Zc Respectively. This division is
known as Indicator variable. If the variable z(x)
Represents a watch for a random process Z (x),
The indicator b (x) It is considered as a view of the
random indices function B[Z(X)< Z ¢] this function
is a new binary random stochastic process [7].

1-2- Variogram Function Indicator:

After the pointer variable is declared, a binary
random process is obtained where this random (or
accidental) process is spatial{ Z (x); xe D } Since
D' © RP assuming that this process fulfills the basic

stability Hypothesis of intrinsic stationary in which:
a- Mathematical expectation exists and does not
depend on the location x that is :
E(Z(x)=pn VxeD .....(D
b- For all distances h , the increase [Z(Xx + h) -
Z (x)] it has a specific variation and is not dependent
on the location x that is:
Var [Z(x+h)-Z(x)] = E[Z(x+h)-Z(x)]?
Var(Z(x + h) - Z(x)) = 2y(h) Vx, (x +
h) € D, (his the distance btween the sites) (2)
As that 2y(h) is the variogram function Indicator of
the distance h. Z(x) is the spatial variable of the site x
with tow dimensions x=(u,v). We assume that the
binary random Stochastic process B[Z(X)< Z ] is
stable and isotropic, so that 2y(h) depends on the
distance h only.
Now, the classic estimator of variogram function
indicator is defined as:

@)

N 1 N
2y(h)=

LNz ) -z(e)?
NQy & CO |

[8.9.10] these sources adopted the primary source
[11], and surely N ( h) represents the number of pairs
of views that are separated by distance h.
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Now can define a function variogram pointer is
a function representing the degree of heterogeneity of
the continuity of the phenomenon (metal ore wells or
groundwater or air gases) under study to analyze
the spatial heterogeneity within the structure of
the specific occurrence of the phenomenon of the
region, the increasing dimension h between
observations as the heterogeneity becomes large until
the height of the function stabilizes y(h) at a certain
offset like h = aand this offset a it called long, and
after along note will fade covariance function
in variogram as it stabilizes the value of fixed equal
contrast views o 2. This explains outside the study
area, l.e, there is no effect of the phenomenon studied
after the range, or there may be an impact in very
small quantities.

Given the importance of the variogram function vy(h)
scientists have been able to identified various models
that can be expressed in Table(1) shown in the
appendix (A).

Now you can give be the following formula of
the Semi-Variogram function by shifting (h).

1 1 N(h ceee (4)

"N=Nm &
It is the square of the differences between spatial
observations that are shifted aparth ,as that
N(h) represents the number of views pairs Z (x;),
Z(xij+h),[12.13]. Called the equation (4) Semi -
variogram function Indicator because there is a half
at the right end of the equation.

1-3- drafting issue Formulation
Problem:

The appropriate methods of the experimental
variogram function. l.e, containing the unknown
parameters proposed so far ignore the visual diagram
represented y (h) Sinceh=h,h,,.....h, and then
find a theoretical variogram that is close to it fit the
theoretical model with the experimental model and
this method is a useful tool because the parameters of
the experimental model is not estimated with the least
possible error [14,15]. Which should be a measure
of convergence between the experimental model and
the theoretical model by the total difference between
the boxes variogram demo and variogram indicator
theory, which must be less than what can, and of
course a function variogram demo containing
unknown parameters represent a vector 4as:

0=(6., 0,, , @) will therefore encode function
variogram index theoretical form y(h :0), That is :

V058) = D TG = 1G O o (5)
j=1
The formula (5) represents the estimated least normal

squares to @ and of course we will get 8 after taking

)[Z(Xi +h)-Z(x)1?

of the

the derivative of equation (5) for @ and equal to zero
to get & (the least squares estimator), although

equation (5)does not have a geometric appearance
because it does not consider the distribution of the
variability function of the estimator is important in
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addition to the variability of the spatial variable
Z(x) Therefore, the appropriateness of the
generalized least squares estimator assumed that
the variogram estimator obtained at distances ( h,
h,,...h,) That nthey are fixed and represent the
number of views that are apart from each other h .The
Ordinary Least Squares (OLS) Is the estimation of the
parameter @ and suppose that it is written & so

that:

$(0) =22 (/(h(D) = (N(1):0))?-c(6)

N(h) =
The smallest thing possible,as that S(&) it represents
the sum of the residuum boxes or error between

variogram indicator theoretical and variogram
indicator, when the:

2§ = (2§(hy) v 29(R)). I 2% symbolizes the vector
of random variables 2§(h;) , i = 1, 2,... n. with a
contraAlst matrix where :

Var(2y)=o

Then to get the estimator 6 we use the Generalized

Least Squares method (GLS) of reducing the
amount

Q0= g'©® a g
9(0)=@27(h) - 27(0;0)..... 27 (h,) ~ 2 (P, O))’

there is an intermediate stage between g and @ is the
least-squares method which states that the estimated
0" : We get it by reducing the amount
W(0)=9'(0)V-9(6)

v =diag{VaF(Z;(hl)),VaF(Z;(hz)).----Var(27(hn))}
weighted matrix .

Diagonal matrix with zeros in all inputs except
contrast, 2§(h,), i=1,2,....nonthe main diameter

Var(2;(h))

To obtain the final formula for the weighted least
squares estimator, the proofs listed below must be
proved:

Vis the

1-3-1-Theorem(1) [16] :

TJPS

If it wasx,; and Xx,two random variables
xi~N(0,2:%),%x~N(0, =,?),and she was

Corr (x1,X2)=p Then Corr(x,2,x,%)=p?
1-3-2-Theorem (2) [17] :

For each pair of new spatial random variables [Z ( x +
h),Z (x)] Covariance exists and depends on the
separation distance h, The stability of covariance
leads to the stability of variance and the variogram
indicator and a correlation can be obtained between
covariance C(h) The function of the indicator
variogram (k) and contrast. As in the following

formula- :
y(h)=C(0)-C(h)
Sincethat C(0)=o?, E[Z(x)] = , VXED
1-3-3-Theorem(3) [18] :
Let it be { Z (x)} stable new random spatial process
of second order though i = 1,2, ..., n Z(x;) views at
sites X 1, X 2,..., X, then:
cov(Z(xi]—Z(xk),z[xj]—z(xk))=y(xi—xk]+y(x}—xk)—y(xi—x)),i-?tj'#k
Since h= (x;-x;) represents distance between
locations and y (.) Semi -Variogram function.
1-4-Generalized least Squares (GLS):
Returning to the classical estimator defined by
equation (3) and suppose that { Z (x)} is Gausian
(normal) and as it is known that any conciliation of
a linear variable Gausian is also Gausian if :
~N(0,1) .....(8)
According (Z(x+h)=Z(x))

WNar(Z(x+h)-Z(x))
to the basic premise
Var(Z(x+h)-Z(x))=E[(Z (x + k) — Z(x)]* =2y(h)

(Zx+)—-Z(x))

of (8) results 2r(h)

Sincen (Z (x+h)) —Z (X)) =2y (h) ~X(y
ItIﬂ'[fijJ represents a variable where the Chi -square

distribution is distributed with equal freedom 1 the
correlation between the two variables can be written
(Z(y+h2)-Z(y)? (Z(x+hy)-Z(x)) ?and
offset h; and h; in the following form:

Corr [Z (x+h1-Z(x))2(Z (y+h2-Z(y)) 1. (9)
= [(Corr ((Z(x + hy) -Z(x)), (Z(y + h,) -
Z(yN? e . (10)

2

HZ(x+h) - Z():VarZ(y + hy) - Z(»)?

{ Cov(Z(x+h)—Z(x),(Z(y+h)— Z()) }
Va =

Corr{Z(x+h,)-Z(x).(Z(y+ hz)-Z(y)J =

2

¢0V'(Z(X+h1)-Z(X)= (Z(Y“‘:)'Z(ﬂ))
T 1

1 27 () 2r(hy))? J

féov(Z(x+hl ) Z(¥+hy )= Cov(Z(x+hy ).Z(¥))—Cov(Z(x). Z( ¥ +hy ))+Cov(Z(x).Z(¥))

1

1

Var(Z(x+h)—-Z(x) 2 . Van(Z(y+ W) -Z(»)) 2

Applying the two versions of the theorem (2) and
theorem (3)

C(h)=C(0) - »(h)
var(Z (x+h) —Z(x)) = 2,-(h)
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[19.20] .It should be noted that the border
contains C(0) all will be reduced as a result of
simplification as we get an equation that contains

only limits in it y(h) Variogram function .
[corr{Z(x+ hy) = Z(x),(Z(y + hy) — Z(»)]}]?

syt R ) yUx -yt ) -y x—y+h -k ) -y x—y D]

V2r(h)2r(hy)
| . | Represents distance between location points, Note
that equation (9) leads to equation (10) ,
That is proved by theorem (1), that is :
coor (xi,x3) = [coor(xy,x5]% e e v v (11)
The  expressions  mentioned  earlier, Then
var(29(k;)) ,cov(2¢(h,) — 2¢(h;)) @nd as possible and
get their expense matrix V after adapting the
theoretical pharyocram model, which may be
spherical, exponential, or Gausian, we set the
parameters & Place the values that we get from the
drawing variogram indexto get appropriate
(Spherical Model) interms of the model & Which
v(h; 6) and from V can get V(0) .
From the standard definition of least generalized
squares in the quadratic form:
G =2yt -2r(h:0)V (27 (h) -2 (h:0))
Since that V' = diag (var(2y(n)......,var(2y(h,)

G=, » ;
{var(2y(h; )} (2(h; -2/ (o)

Because of thatV diagonal matrix means that

heterogeneity is equal to zero so the correlation

Corr (Z(xi+h)-Z(x;)), (Z(yi+h)-Z(y;)=

0

Then we can get [2],[3] :

var(27(h;)) = (2r(h;,0))*
N(h,)

Instead (13) in (12) results in

G= J.%1(2(701;9)2 IN(R)*(27(hj) - 27(hj: 6))% =

ceeenee(13)

n . Zf(hj)ny(hj;g) 2
NG A
After simplification, the following equation is
produced:
B n ?(hjj ~ 2
G_Z‘N(hjj{f(higj 1] U & )

Formula(14) was obtained from the assumptions of
the researcher (Cressie) [17], and adopted (Chiles and
Delfiner) [18]. The approximate estimate of the least
weighted squares can be obtained from the
reduction G to me @ it is minimized G by taking the
derivative, we cannot get a complete equation that
can be analyzed to get & . In this case, we use
the algorithm  Newton Raphsonto  obtain  the
estimated @~ . This will be explained in the practical
side.

Section II

Calculating the quality of the Variogram Function
using the Generalized least Squares (GLS)
Introduction

TJPS

The practical aspect includes the Newton Raphson
algorithmto obtion the estimator and estimating
the variogram function indicator for real data taken
from the site (x;) and values Z (x;) Sincei=1, 2,...
n and the total of data from inside Iraq water wells in
the area Ba'shigah / province of Nineveh / Iraq [21] .
They arethe aquatic conductivity plants in45
Exploration well in thearea, hasbeen taking
a subset of these the data (30) wellsto get a regular
network Regular grid, and Table No(2) shown in the
appendix (A) illustrates mjuah water conductivity
coefficient data measured by unit (M 2/ day).
2-1-Semi- variogram function calculation :

If we takeZ = {Z (X1), Z (X2),... .Z (Xp)}1t
represents a sample of views at installed sites x,,
Xo,.... X, for the second-order, stable, binary spatial
randomization {Z(x). Assume that 2y(h;8)
variogram function indicator theory is valid and we
want to reconcile the variogram classic of this process
and rely on the parameter & which represents
the vector of unknown parameters 6= (0, 6,, 63)'
also that ® e ©cR¥ and represent © Parameter
space 6, represent 6; Jokes effect (Nugget) and
6, Poor continuity of the spatial phenomenon or
measurement error, which is part of the variation,
ie: GZZC(O)-Gl

The remaining part of ( TB) sill can be written in the
format C(O): O+ 6,

63 The extent of the spatial phenomenon under study
and the extent represents the distance that determines
the presence of spatial phenomenon and the distance
in excess of the spatial phenomenon begins to fade
and the fee variance of the variogram indicator to
equal its height tuberculosis or contrast with no
omission that y =6,y = 0,,6;=a(Range) and
c%=6,+ 0,=Sill.

It is well water data will calculate the results of sub—
functions variogram indicator using equation (3)
offsets h = 1,2,... 7 and for the four directions in
terms of angle @ Since that = 0°, 8=45°, 6= 90
°, 8= 135 °as shown in Table (3) in the appendix
A) .

Note from Table (3) that the sime -variogram
function was calculated according to the equation (3)
For the four important directions of the compass,
these directions are North - South, North - East,
Southwest, East-West, North, West-Southeast, which
represent the above angles as shown in Figure (1).

#=135°

Fig. 1: The four angles used to calculate the semi-
variogram function represent the indicator
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0 r r r r r
1 2 3 4 5 6 7

h
Fig. 2: The semi -variogram Indicator at the four
corners, which shows it as a beam indicating the
isotropic property.

Note from Figure (2) that the semi -variogram
drawing of the angles§= 0°,0= 45°,60=90°, 0=
135° Clustered together in an intertwined beam,
which explains that the semi -variogram function
of this data is isotropic.lsotropic. le, does not depend
on direction. To obtain the model of the quasi-
variogram indicator, we find the average of the semi-
variogram function from these four functions, from
which we obtain the quasi -variogram indicator, one
representing the  spatial reliability .  Spatial
dependence these data are as shown in table(4).in the
appendix (A) .

The average variogram indicator in table (4) was
obtained by adding the values of (907 with (")

and dividing by 2 when h=1.2,....,7 The same
process with  y(1357) and y(457) when

h=0.5542,1.8299,...., 12.0118 We note that the
values of the semi -variogram function increase with
increasing values h .

Table (4) shows the adjustment of the variogram
Indicator rate that was extracted from the results of a
program designed for this purpose by the Matlab .
2-2-(Newton -Raphson algorithm)

1- Beginning.

2- Dataentry X.

3- Calculate the pointer' s varogram function at the
angles §=135°,6=90°6=45°60=0

4- Draw the indicator of the varogram function of
the four angles.

5- Calculate the average of the varogram function of
the indicator with the display of the results and plot
the function.

6- Print estimates values for @4, 65, 6 5 Calculated
from seme -variogram indicator function.

7- End.

Developed algorithm

We follow the same steps as above and add the
following steps:

1- Beginning.

2- Enter 6,,,0,,0 3, calculated from algorithm

Q).

TJPS

3- Calculate the first derivative of equation.( 14 )

4- Calculate the second derivative of equation.( 14)
5- Using Newton Ravson's algorithm by taking the
values 6y, , 0,,,0 4 and stopping condition is 100
iterations.

6- Calculate the spherical model and the exponential
model of the new values (obtained from the Newton-
Ravson algorithm from step (5).

7- Comparing old and new results (ie improved
values) using the least squares method with the graph.
8- Calculate the lowest error ratio between the real
and estimated values using equation (15) for the
spherical and exponential models.

9- End.

2-3-Estimate Generalized least Squares:

Now we will use Newton Ravson's algorithm to get
the estimator " in the equation(14). In order to apply
the Generalized Least Squares we must derive the
equation (14) derived partial first and second, that is:

G'G" anyfor0,,0,,0; Since: 0=(6,,6,,6,)

This was a special program that used a system Matlab
The growth exponential primary values obtained
from the drawing variogram function, which
were taken from the drawing function semi variogram
indicator of Figure (2) in the total of the data for
01,0,,03

901: 0.6 902: 1.2 603: 9.3

The spherical model (Spherical Variogram) Can be
written as follows:

y()=6+613(06) -3 (h/6)]

The exponential model (Exponential Variogram) It is
as follows:

y(h) =6 +6,[1-exp(-h/6y)]

We have obtained the required results by repeating
the above method. A in the algorithm is as follows:

(0),1=(0) —Gila,
Since 6 (1) appreciation & when repeating
(9] kk+1 appreciation & when repeating k ,q  the

first derivative vector relative to the parameter 6
for G in equation(14) when repeating k and G, The
second derivative matrix of the equation G for
master & and G known as the Hessian matrix .

If we assume that :p — " + 2diage" SO

(0)k+1 = (e)k - D_lqk

Called A
[16.22] .
We stopped the implementation of the program at 100
iterations to get the best approximation between the
real and approximate values curve and the lowest
mean error square between them and the exponential
and spherical models .6 1, 8 ,, 6 sThe values of A are
as follows:

at 100 iterations and a value A =300 best in
exponential model:

6,=0676" 0,=1.092' 6, =9.9972

By Levenberg-Marquardt  parameter
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In the spherical model, the best was achieved when
repeating 100 and value A = 3000

¢,=059 6,=1442, ¢ =10.013

But we did not just get the above results, we
calculated the quality of the reconciliation of
variogram by the estimator of least squares weighed

by the mean error square (MSE) Mean Squares
error which is calculated from the following law:

Mse= 1, (7 ()7 (h;;6))?
1=1 n

Of aspecial program specially prepared for this

purpose by the system MATLAB was obtained less

error ratio between the real values and the estimated

values for the data in the study site using the value of

the spherical model

MSE =7.9911 Figure (3) illustrates this.

Using the exponential model, the lowest error rate

was

MSE = 1. 9551 Figure (4) illustrates this.

That is, the results given by the spherical model

better than exponential patterns.

are

Plot of spherical
35 T T

25

15

/

.

2

.

4

r

6

.

8

.

10

.

0.5
0 12

14

h
Fig. 3: is the best estimate of the spherical model
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Plot of exponential
1.8 T T

1.7

1.6

1.5

1.4

()

1.3

1.2

1.1

1

0.9

0.8 r r r r r
5 6 7 8 9
h

Fig. 4: is the best estimate of the exponential model

r r r
1 2 3 4 10

Of the two forms (3), (4) note that the exponential
model gave the best results of the spherical model of
the data set in the area of study . After obtaining the
final formula to estimate the function variogram
cursor is possible to use this function to predict the
spatial process and we believe that the prediction will
be accurate because of the accuracy of a function
variogram which is considered very important in
the process of teacher Kriging and common
Cokriging.

2-4- Conclusions

Because we did not get the complete solution for
estimating the least squares, Newton Ravson's
algorithm was used to obtain the final solution for
estimation. And we listed the four directions 6=
0°,0=45° 60=90°, 6= 135° This is in order to
obtain the index variogram rate ,which is an accurate
representative of the spatial data and is better than the
calculation of variogram index one. It can anus of
this research future work by applying it to other data,
for example, climate data or infections environmental
etc .by introducing a certain threshold and the
study of this phenomenon at that threshold, Also the
Variogram Function Indicator estimated by this
method can be used in all types of Kriging and
prediction, for example, Ordinary Kriging, the
Universal Kriging and Cokriging .

Appendix (A)

Table 1: Models of Variogram functions

Formula

Formula Name

Spherical Model  [14]

Yoty

e | woty . [1-

=0
ik 1

— + =
2a 2

&1 0<hza
&
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2- | Gaussian Mode | [7] | y(h)=y[1-exp(-h*/2a?)]
3- | Exponential Model [10] | y(h)=y+y[1-exp(-h/a)]
Both &, v o, v unknown parameters called covariance components or semi indicator variogram functions

Table 2: Data and their location in the study area

T | juvenileu | juvenile v | Water conductivity plants
(M ?/ day)

1 517.4 827.35 2925
2 517.55 827.35 886
3 517.85 827.35 4671
4 517.95 827.45 7857
5 518.8 825.6 3396
6 519.7 822.7 2993
7 516.3 826 919
8 519.7 827.1 19990
9 519.45 827.1 2274
10 519.5 824.9 2907
11 517.85 825.45 4899
12 517.2 826.12 1725
13 518.25 825.25 2721
14 516.8 825.55 865
15 517 828.55 71565
16 516.7 828.65 42123
17 516.55 827.5 498
18 516.5 828.8 69933
19 516.3 828.55 3319
20 516.1 829.05 24024
21 515.9 829.15 19817
22 513 824.7 1222
23 515 823 947
24 517.2 827.9 4980
25 517.4 827.4 4994
26 516 826.65 665
27 518.5 824.7 948
28 517.6 823.6 5086
29 511.3 823.6 3791
30 513.65 822.75 1480
31 511.55 824.45 3160
32 513 824.4 3165
33 511.6 824 4960
34 519.25 824.7 3959
35 511.8 824.9 2576
36 516.1 825.75 4743
37 510.5 825 217
38 518 825 1953
39 511.65 825 4770
40 851.05 828.8 2796
41 517.3 827.3 334
42 514.6 824.7 857
43 515.75 824.6 4959
44 518.7 825.25 3979
45 514.5 825.5 1983

Table 3: Results of the Parameters of the Parameters of Data at the Study Location

THETA=0 THETA =45 THETA =90 | THETA =135
hn(h) [y(6.h)| h _[n(h)[y(®.n)[h] n(h) [y(6.h)[ h [n(h)[y(0.h)
1 90 0.3115 1.5002 80 0.2326 1 90 0.1902 1.5011 80 0.3991
2 80 0.4992 1.9953 62 0.3898 2 80 0.3011 2.9984 62 0.7898
3 70 0.6592 3.8772 50 0.6016 3 70 0.5599 3 .8956 50 1.3981
4 60 1.3398 6.0019 33 0. 8116 4 60 1.8782 41121 33 3.0012
5 50 1.5053 | 7.1102 24 0. 9883 5 50 1.9960 6.0722 24 4.0023
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6 40 1.9012 | 8.0024 16 1.0878 6 40 2.0082 7.4735 16 4.1998
7 30 2.0992 | 9.0112 4 1. 2239 7 30 2.7543 | 8.9995 4 5.1124
Table : 4 results of the Faverage semi -variogram

h y(h)
1.000 0.6992
1.5152 0.6544
2.000 0.6924
2.7981 0.7318

3 0.7034

4 1.1129
4.1123 0. 4993

5 0. 5669
5.5988 0.7931
5.999 0.6757
6.000 1.0014
7.0240 0.9989
7.4852 0.5910
8.8924 1.1157
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