

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage:<http://tjps.tu.edu.iq/index.php/j>

Calculation of Fundamental Mode Properties for Single-Mode Fibers

Aqeel R. Salih

ABSTRACT

Department of Physics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq **<https://doi.org/10.25130/tjps.v26i6.194>**

ARTICLE INFO.

Article history:

-Received: 9 / 9 / 2021 -Accepted: 7 / 10 / 2021 -Available online: / / 2021

Keywords: Fundamental mode, Fiber mode properties, Single-mode optical fibers, Step-index fibers, RP Fiber Calculator.

Corresponding Author: Name: Aqeel R. Salih

E-mail: [draqeelrsalih@gmail.com](file:///C:/Users/saad/Downloads/draqeelrsalih@gmail.com) Tel:

1. Introduction

Optical fibers are one of the most revolutionary inventions of the $20th$ century. Some of their applications include communications, medical instrumentation, sensing systems, illumination devices, display systems and inspection devices [1]. A fiber that can operate only in the fundamental mode is known as a single-mode fiber (SMF) or a monomode fiber. The fundamental fiber mode is called the $LP_{0,1}$ mode to indicate that it is linearly

In this research, properties for the fundamental mode of single-mode step-index optical fibers with core diameters 9.8–15.6 µm, core refractive index 1.432 and cladding refractive index 1.43 are calculated at a wavelength of 1.55 µm by using RP Fiber Calculator and then compared with the results obtained from equations. It is shown that there is a good agreement for all properties. These results can be useful for designing practical fibers.

> polarized (LP) [2]. Due to the presence of only one mode, a SMF is free from modal dispersion and can therefore be used for higher bandwidth applications [3]. A step-index fiber (SIF) has a refractive index profile that steps from low (cladding) to high (core) to low (cladding) [4], as depicted in Fig. 1, where n_1 and n_2 are the refractive indices of core and cladding, respectively.

Fig. 1: Refractive index profile and typical ray in a SM SIF [5].

Optical fibers based on silica glass are the most important transmission medium for large-capacity and long-distance optical communication systems. Low loss properties is the most distinguished feature of optical fiber [6]. The loss for silica optical fibers at 1.55 µm wavelength has been reduced continuously, such as 0.149 dB/km in 2013 [7], 0.146 dB/km in 2015 [8] and 0.1424 dB/km in 2017 [9]. In my previous works, SM [10] and MM [11] fibers have been designed. In this work, the fundamental mode properties of SMFs have been calculated at a typical communication wavelength of 1.55 µm.

2. Basic Formulas:

The important parameters associated with optical fiber propagation are described below:

1. The *V* number relates the important design variables for the fiber: the core diameter d , the refractive indices n_1, n_2 and the operating wavelength λ [12]. It is defined as [13]

$$
V = \frac{\pi d}{\lambda} \sqrt{n_1^2 - n_2^2} \dots (1)
$$

Fiber losses are the smallest near 1.55 μ m. The wavelength range of 1.53–1.57 μ m is called the conventional band (C band) [14]. A SIF has only one mode when $V \le 2.4048$, where 2.4048 is the first root of the zeroth order Bessel function of the first kind [15, 16]. For good SMF operation, the practical range is [17]

 $1.8 < V < 2.4$

TIPS

2. The phase constant β (phase shift per unit length) [18] is expressed in terms of the normalized phase constant b as [15]

 $\beta = k\sqrt{n_2^2 + b(n_1^2 - n_2^2)}$...(2) where $k = 2\pi/\lambda$ is the vacuum wavenumber, and $b = (1.1428 - \frac{0.9960}{V})$ $\frac{1960}{V}$)² for 1.5 \leq $V \leq$ 2.5. 3. The effective refractive index is defined as [15] $n_{eff}=\frac{\beta}{\nu}$ $\frac{p}{k}$ (3)

A mode is cutoff when its effective refractive index n_{eff} is equal to the cladding refractive index n_2 and is strongly guided when n_{eff} is well above n_2 . Therefore, the guiding strength of a mode is described by n_{eff} [13].

4. The effective mode area (mode field area) for the fundamental mode is [19]

$$
A_{eff} = \frac{\pi D^2}{4} \dots (4)
$$

where the mode field diameter is [10, 20]

$$
D \approx \left(0.634 + \frac{1.619}{\sqrt{v^3}} + \frac{2.879}{v^6} - \frac{1.561}{v^7}\right) d,
$$

which is accurate to within 1% for $1.5 \le V \le 2.5$. 5. The ratio of core power to total power is [21] $P_{\rm core}$ $\frac{c}{p}$ = 1 – e^{-2d^2/D^2} ... (5)

For large values of V , the field is concentrated in the core and the phase constant approximates to the core wavenumber and the effective refractive index will be approximately equal to the core refractive index. Physically, most of the power is contained in the core [12].

3. Results and Discussion

In this work, thirty SM SIFs with core diameters from 9.8 µm to 15.6 µm in steps of 0.2 µm are studied. The refractive index of the core is $n_1 = 1.432$, and that of the cladding is $n_2 = 1.430$. The refractive index step is $n_1 - n_2 = 0.002$. Equation (1) can be used to estimate the core diameter of SMFs used in this work at $\lambda = 1.55 \mu m$. It shows that $V < 2.4048$ for a core diameter $d < 15.68$ µm and $V > 1.5$ for $d >$ $9.78 \mu m$. The parameters calculated from Equations (1) to (5) are tabulated in Table 1 for $1.5 < V < 2.4$. Results obtained from the fiber optics software RP Fiber Calculator (PRO version 2020) are in Table 2. A good agreement was established. The calculated fundamental mode properties are phase constant, effective refractive index, mode field diameter, effective mode area and the relative core power.

It can be seen from Tables 1 and 2 that for an increase of core diameter by 20%, the corresponding increase in *V* number is about 3%. The phase constant (and thus the effective refractive index) and the relative power in the core increase with increasing the diameter of the fiber core, i.e. with increasing *V* number of the fiber. The mode field diameter is larger than the core diameter; this is due to the modal field penetration into the cladding. The mode field diameter (and thus the effective mode area) decrease when $V < 1.8$ and then increase when $V > 1.8$. More than 66% of the power propagates in the core when $V > 1.8$.

\boldsymbol{d}	from Eq. (1)	from Eq. (2)	from Eq. (3)	from Eq. (4)		from Eq. (5)
(μm)	V	β	n_{eff}	D	\boldsymbol{A}_{eff}	$P_{\rm core}$
		$(\mu m)^{-1}$		(μm)	$(\mu m)^2$	\boldsymbol{P}
9.8	1.5028	5.79861	1.430461	16.392	211.0	0.511
10	1.5334	5.79872	1.430487	16.298	208.6	0.529
10.2	1.5641	5.79882	1.430512	16.220	206.6	0.547
10.4	1.5948	5.79892	1.430537	16.156	205.0	0.563
10.6	1.6255	5.79902	1.430562	16.104	203.7	0.580
10.8	1.6561	5.79912	1.430586	16.066	202.7	0.595
11	1.6868	5.79922	1.430610	16.036	202.0	0.610
11.2	1.7175	5.79932	1.430634	16.016	201.5	0.624
11.4	1.7481	5.79941	1.430657	16.006	201.2	0.637
11.6	1.7788	5.79950	1.430680	16.004	201.1	0.650
11.8	1.8095	5.79959	1.430702	16.008	201.3	0.663
12	1.8401	5.79968	1.430724	16.020	201.5	0.674
12.2	1.8708	5.79977	1.430746	16.036	202.0	0.686
12.4	1.9015	5.79985	1.430767	16.058	202.5	0.697
12.6	1.9321	5.79994	1.430787	16.086	203.2	0.707
12.8	1.9628	5.80002	1.430808	16.118	204.0	0.717
13	1.9935	5.80010	1.430828	16.154	204.9	0.726
13.2	2.0241	5.80018	1.430847	16.194	206.0	0.735
13.4	2.0548	5.80026	1.430866	16.238	207.1	0.744
13.6	2.0855	5.80033	1.430885	16.286	208.3	0.752
13.8	2.1162	5.80041	1.430904	16.336	209.6	0.760
14	2.1468	5.80048	1.430922	16.390	211.0	0.768
14.2	2.1775	5.80056	1.430940	16.446	212.4	0.775
14.4	2.2082	5.80063	1.430957	16.504	213.9	0.782
14.6	2.2388	5.80070	1.430975	16.566	215.5	0.788
14.8	2.2695	5.80076	1.430991	16.628	217.2	0.795
15	2.3002	5.80083	1.431008	16.694	218.9	0.801
15.2	2.3308	5.80090	1.431024	16.762	220.7	0.807
15.4	2.3615	5.80096	1.431040	16.832	222.5	0.813
15.6	2.3922	5.80103	1.431056	16.902	224.4	0.818

Table 1: *V* number and fundamental mode properties at $1.55 \mu m$.

TJPS

Tikrit Journal of Pure Science Vol. 26 (6) 2021

\boldsymbol{d}	From RP Fiber Calculator						
(μm)	β	n_{eff}	A_{eff}	$\overline{P}_{\rm core}$			
	$(\mu m)^{-1}$		$(\mu m)^2$	\boldsymbol{P}			
9.8	5.79853	1.430441	205.7	0.536			
10	5.79863	1.430466	202.7	0.553			
10.2	5.79873	1.430490	200.2	0.570			
10.4	5.79883	1.430515	198.2	0.586			
10.6	5.79893	1.430539	196.6	0.601			
10.8	5.79903	1.430564	195.4	0.615			
11	5.79913	1.430587	194.6	0.629			
$11.\overline{2}$	5.79922	1.430611	194.0	0.643			
11.4	5.79932	1.430634	193.7	0.655			
11.6	5.79941	1.430657	193.6	0.667			
11.8	5.79950	1.430680	193.8	0.679			
12	5.79959	1.430702	194.1	0.690			
$12.\overline{2}$	5.79968	1.430724	194.7	0.701			
12.4	5.79977	1.430745	195.4	0.711			
12.6	5.79985	1.430766	196.2	0.721			
12.8	5.79993	1.430787	197.2	0.730			
13	5.80002	1.430807	198.4	0.739			
13.2	5.80010	1.430827	199.6	0.748			
13.4	5.80018	1.430846	201.0	0.756			
13.6	5.80025	1.430866	202.5	0.764			
13.8	5.80033	1.430884	204.1	0.772			
14	5.80040	1.430903	205.8	0.779			
14.2	5.80048	1.430921	207.6	0.786			
14.4	5.80055	1.430938	209.5	0.793			
14.6	5.80062	1.430956	211.4	0.799			
14.8	5.80069	1.430973	213.4	0.806			
15	5.80076	1.430989	215.6	0.812			
15.2	5.80082	1.431006	217.7	0.817			
15.4	5.80089	1.431021	220.0	0.823			
15.6	5.80095	1.431037	222.3	0.828			

Table 2: Fundamental mode properties at 1.55 µm

Fig. 2 shows the intensity and amplitude profiles of the fundamental $(LP_{0,1})$ mode which produced using RP Fiber Calculator (PRO version 2020). The fundamental mode has a Gaussian profile. The gray

circle indicates the interface between the core and the cladding. The intensity is greatest at the center of the core and it decreases toward the cladding.

TJPS

Tikrit Journal of Pure Science Vol. 26 (6) 2021

Fig. 2: Profiles of the LP0,1 mode for six SMFs with core diameters 10–15 µm.

4. Conclusions

In this paper, several fiber parameters have been calculated at a wavelength of 1.55 µm. It is shown that to obtain more than half of the power in the core, the core diameter of the SMF must be in the range

9.8–15.6 µm. The reported results will be helpful in designing practical optical fibers which can be used in high bandwidth fiber optic communication systems.

References

[1] Weik, M. H. (1989). Fiber Optics Standard Dictionary, 2nd edn., Springer.

[2] Neumann, E. -G. (1988). Single-Mode Fibers: Fundamentals, Springer.

[3] Ghatak, A. and Thyagarajan, K. (1998). Introduction to Fiber Optics, Cambridge.

[4] **Massa, N. (2008). Fiber Optic Telecommunication. In: Roychoudhuri, C. (ed.), Fundamentals of Photonics, SPIE.**

[5] Saleh, B. E. A. and Teich, M. C. (1991). Fundamentals of Photonics, Wiley.

[6] Okamoto, K. (2006). Fundamentals of Optical Waveguides, 2nd edn., Elsevier.

[7] Hirano, M. et al. (2013). Record Low Loss, Record High FOM Optical Fiber with Manufacturable Process. Proc. Opt. Fiber Commun. Conf., 17–21 March 2013, Anaheim, CA, USA. Paper PDP5A.7.

[8] Makovejs, S. et al. (2015). Record-Low (0.1460 dB/km) Attenuation Ultra-Large Aeff Optical Fiber for Submarine Applications. Proc. Opt. Fiber Commun. Conf., 22–26 March 2015, Los Angeles, CA, USA. Paper Th5A.2.

[9] Tamura, Y. et al. (2017). Lowest-Ever 0.1419 dB/km Loss Optical Fiber. Proc. Opt. Fiber Commun. Conf., 19–23 March 2017, Los Angeles, CA, USA. Paper Th5D.1

[10] Salih, A. R. (2020). Design of Single Mode Fiber for Optical Communications. *Ibn Al-Haitham Journal for Pure and Applied Science*, **33 (1)**: 40–47. [11] Salih, A. R. (2021). Design of Step-Index

Multimode Optical Fiber. *Journal of Physics: Conference Series*, **1879 (3)**: 032074.

[12] Senior, J. M. (2009). Optical Fiber Communications: Principles and Practice, $3rd$ edn., Pearson.

[13] Dong, L. and Samson, B. (2017). Fiber Lasers: Basics, Technology and Applications, CRC.

[14] Agrawal, G. P. (2016). Optical Communication: Its History and Recent Progress. In: Al-Amri, M. D.; El-Gomati, M. M. and Zubairy, M. S. (eds.), Optics in Our Time, Springer.

[15] Ghatak, A. (2010). Optics, McGraw-Hill.

[16] Kumar, S. and Jamal Deen, M. (2014). Fiber Optic Communications: Fundamentals and Applications, Wiley.

[17] Brown, T. G. (1995). Optical Fibers and Fiber-Optic Communications. In: Bass, M.; Van Stryland, E. W.; Williams, D. R. and Wolfe, W. L. (eds.), Handbook of Optics, Volume II: Devices, Measurements and Properties, 2nd edn., McGraw-Hill. **[18]** Peters, K. J. and Inaudi, D. (2014). Fiber Optic Sensors for Assessing and Monitoring Civil Infrastructures. In: Wang, M. L.; Lynch, J. P. and Sohn, H. (eds.), Sensor Technologies for Civil Infrastructures, Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment, Woodhead.

[19] Johnson, M. (2010). Optical Fibres, Cables and Systems, ITU.

[20] Hussey, C. D. and Martinez, F. (1985). Approximate Analytic Forms for the Propagation Characteristics of Single-Mode Optical Fibres. *[Electron. Lett.](http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4251626)*, **21 (23)**: 1103–1104.

[21] Agrawal, G. P. (2021). Fiber-Optic Communication Systems, 5th edn., Wiley.

حساب خواص النمط االساسي لاللياف احادية النمط

عقيل رزاق صالح

قسم الفيزياء, كلية التربية للعلوم الصرفة (ابن الهيثم), جامعة بغداد, بغداد, العراق

الملخص

في هذا البحث, حسبت خواص النمط الاساسي للالياف البصرية احادية النمط عتبية المعامل بأقطار لب 9.8–15.6 مايكرومتر, معامل انكسار اللب 1.432 ومعامل انكسار العاكس 1.43 عند الطول الموجي 1.55 مايكرومتر باستعمال RP Fiber Calculator ثم قورنت مع النتائج المستحصلة من المعادلات. وتبين ان هناك اتفاقاً جيداً لكل الخواص. يمكن ان تكون هذه النتائج مفيدة لتصميم الالياف العملية.