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1. Introduction

The stochastic process is 2"-order stationary if the
mean and variance of the process does not depend on
time t, the most important condition to the random
error in all time series model must be a white noise
process with zero mean and constant variance and
uncorrelated. In applications the mean and variance
may depend on the time ¢, many researchers
discussed this situation and proposed some non-linear
time series model known as autoregressive
conditional heteroscedastic to avoid the volatility in
data that cause the dependence of mean and variance
on time t. The first ARCH model proposed by R.
Engle in 1982 based on the martingale difference
series [2].

A high number of researchers studied the stationarity
and existence of a moments for the family of ARCH
and GARCH models. Nelson in 1991 proposed an
exponential GARCH model (EGARCH) as an
alternative symmetric model of logarithmic condition
—al variance to avoid the positivity of parameters.[10]
Glosten — Jagannathan - Rankle Generalized
Autoregressive  Conditional Heteroscedasticity
Variance model in 1993 which was known for short
(GJR-GARCH model) proposed the GJR-GARCH

ABSTRACT

This paper deals with finding stationarity Condition of GJR-

GARCH(Q,P) model by using a local linearization technique in order to
reduce this non-linear model to a linear difference equation with
constant coefficients and then obtain the stationarity condition via a
characteristic equation.

Finally we apply the obtained stationarity conditions of GJR-
GARCH(Q,P) model to a real data that represents a monthly Brent
Crude oil prices at closing in dollars for period (JUN. 1989-DES. 2018)
and we find that GJR-GARCH(3,1) is the best model according to AIC
and BIC information criteria.

model as an expansion of GARCH model to capture
asymmetric impact of negative or positive

shocks on the conditional variance usually called the
Leverage effect .[4]

Our goal in this paper is to studying the stationarity
condition of GJR-GARCH(Q,P) model by using
dynamical approach that approximate this model to a
linear difference equation, this method known as
local linearization approximation method proposed
by T. Ozaki (1985) when he find the stability
condition of the exponential autoregressive model
(EXPAR).[11]. Mohammad and Salim in 2007 used
this model in order to find the stability condition of
logistic autoregressive model [5], Mohammad and
Ghannam in 2010 studying the stability condition of
Cauchy model [6], Mohammad and Ghaffar in 2016
studying the stationarity of GARCH(Q,P) model [7],
and Mohammad and Mudhir in 2018 studying the
EGARCH(Q,P) model [9].

2. prelimiaries

A non-linear time series model in a discrete time can
be represent as a discrete time dynamical system by
considering the system

Xe = f(Xpo1, Xpogp ooer Xegr Ze) - ---(2.1)
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where f is a non-linear function and z, be a random
error of the system and its often be a white noise
process (z,~iid N(0,5?2))
The ARCH model that proposed by Robert Engle
in 1982 with the formula :
x; = 0.z, Where z,~iid N(0,1)
Q

oZ=w +Z“i X2, .(2.2)

where W,Z?zl a; are model parameters, o2 is the
conditional variance.
This model based on martingale difference that is

E(X}a/F) =0f ...(2.3)
where F, is a o — field of a random variables
(Xt—1) X2, -, X¢—g), SOMetime called a filter.[3] then
(2.2) can be written as a dynamical system :

of = f(W, 081,085, .., 089)  ---(2.4)

The local linearization technique deals with
approximate a non-linear dynamical system to a
linear dynamical system in order to study the stability
condition of the non-zero fixed point of the original
dynamical system. The non-zero fixed point of a
function f is also a singular point &. If there is no
other fixed point in their neighborhood. Sufficient
and necessary condition for & is satisfy :

E=f@E) ...25)

This technique consist of making small perturbation
around the non-zero singular point ¢ in its
neighborhood with a sufficiently small radius &, such
that ¢ = 0 for n > 2. The effect of this small
perturbation done by replacing & + &,_; instead of
ol ; for 1 < i < Q that is mean we use a variational
equation :

ol =&+ &, for 1<i<Q. ...(2.6)
after substituting this variational equation in (2.4) in
for example we obtain a linear difference equation of
order Q interms of &, & _4,8¢—2, ..., &— and we can
discuss the stability of this linear difference equation
via the roots of its characteristic equation.

Lemma 2.1 [7],[9]
Let a4, ay, ..., @, be a non-negative real numbers, the
following polynomial :

T

P(2) =1—Zaizi

does not have a roots inside and on the unit circle if
and only if P(z) > 1.
In 1986 Bollerslev [12] extended the ARCH model
and suggested a generalized autoregressive
conditional heteroscedasticity model GARCH(Q,P)
which has the following formula :

x; = 0.z, where z,~iid N(0,1)

Q

P
Jtz =W+Zaixt2—i+218j O-tz—j ...(2.7)
i=1 j=1

Many models where suggested as an expansion of
GARCH model. For example a threshold ARCH
model, TARCH by Zakoian et al in 1994 [3] and
exponential GARCH by Nelson in 1991 [10].

TJPS

A symmetric power GARCH model has the

general form :
Xy = 0.2 Where z,~iid N(0,1)

Ut _W+Zat(|xt Ll_ylxt 1) +Zﬁjat —j “'(2‘8)

where > 0 5>0 a; >0, ﬁ]>0 and |y;| <1 for
1<i<Q,1<j<P.

The GJR-GARCH is a special case of a symmetric
power GARCH model where 6 = 2 and this model
has the form :

X = 0pZ¢ Where z,~iid N(0,1)

o2 —w+2(a,+y, e X L+Zﬁ} o2, ..29)

where I,
L= {Oifxt_i <0
Xt—i 1 lf Xe—i >0

[12],[13]

The GJR-GARCH process is stationary if and only

; is |nd|cator function deflned as

yp (2.10)

if
Q

[Zl(ai+%)+iﬁj]<1

By assumption that the stochastic process of squares

{x2} is stationary we mean that the variance is

constant and independent of t, in this case the

variance o2 = E(x?/F,) = E(x%;/F,) for i=

1,2, ..., Q then be taking the conditional expectation

with respect to the filter F, to both sides of (2.9) we

get

E(o?/F) =

EWw/F,) + Z —1(@; + viEUy, ) E(x?;/F.) +
=18 E("t—JQ/Fr)

..(2.11)

o2 =w+ Z(ai + —) o2 + Zﬁ] o ..(2.12)
i=1
where
E([xt_i) = f_m IXt_if(xt—i)dxt—i

= f_ooo 0 f(xe-i)dxe—; + fooo 1f(xp-)dxe—; =0+
1

N =

.
Therefore the unconditional variance of the model
(2.10) given by

o2 = w ...(2.13)

1-[52, @ +%) + oy |
Of the unconditional variance ¢ exists if

[Z _(a; + h) +Z] 1:8}]< 1
Then the stationarity of GJIR-GARCH model required
that the conditional variance ¢? converges to the
unconditional variance .2 see [13],[9].

The condition (2.11) can be obtained by using a
local linearization method as follows since x; = o0;z;
and z,~iid N(0,1), then
E(x¢) = E(0y z,) = E(0).E(2,) = E(0,).0=0
Var(x,) = E(x?) = E(c?. z2) = 02.E(z}) =
2.1 = o?
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By taking a conditional expectation with respect to
the filtering F;_; for i = 1,2, ..., Q to both sides of the
model (2.9) we obtain that

E(of/F) =

E(W/Ft) + Z (i + VLE(Ixt L)) E(xt i/ Feop) +
13} E(Jt ]/Ft 1)

o? —w+Zl L o2 L+ZL Vi

j=1Bj ot

Q
1
of :W+Zai ol +zyi 3 o
i=1 i=1
P
Sae

j=1
In order to find a fixed point we put 2 =02, =

2
-.0i_; t+

..(2.14)

Utz—zz"'zatzqzatzpzf
Q
E=w+ Z Zﬁ,] ...(2.15)
i=1
f:
[1-32, (e + 71) —3P. 5]

Then the non-zero singular point satisfy the condition
(2.5) of the GJIR-GARCH model is the unconditional
variance o2

Without loos of generality let r = max(Q, P) then for

Q > P we consider (ar+y2—r)=0 for r=P,P+
1,..,Q—1 if for Q <P consider B.=0 for

r=0Q,Q+1,..P—1 then the GIR-GARCH model
can be written as
r

r
oF =w+ ) @+ vil ) X+ ) B of
=1 =

Of the unconditional variance
w

[1 - (al + ﬁL
Proposition 2.1:
The non-zero singular point of GJR-GARCH
model is stable if and only if

r
'}/.

Z(ai+,8i+51) <1

i=1
Proof:
In the neighborhood of a non-zero singular point of
GJR-GARCH model with sufficiently small radius &;
such that & — 0 for n = 2 we replacing & + ¢&,_;
instead of o2 ; for i = 0,1,2,...,7 in equation (2.14)
we get

§+&=w+Xio (ai+ﬁi+
E+&=w+3 (e + i+

)] ...(2.16)

1) €+ &)
2) €+ 2i (o +

Bi +_) $ei
fE(1-2iy (e +p+5) ) —w+é =
Yi-1 (ai +/in —) $ei
but § (1 - X7z, (¢ + B + %) ) = w from (2.16)
& = Z (ai FB+D) g 27)

TJPS

Equation (2.17) is a linear difference equation with
constant coefficient and the characteristic equation of
(2.17) can be written as

T

M‘Z(“H‘ﬁi

i=1
Then the non-zero singular point is stable if the
roots of (2.18) lies inside the unite circle, i.e.
lp;| <1 fori=0,1,2,..,r. Where ¢, is the root of
characteristic equation for (2.18)
from (2.18)

/17<1—Z(ai+ﬁi+%) /1‘>= 0
i=1

PR)=1-3(a+pi+) () =0 Gince g
AT #0)
then by Lemma(2.1) the polynomial (2.19) does not
have a roots inside and on the unit cycle if and only if

1
P(3)>0
s[H>1fori=012.r
~A4l<1fori=0,12,..,r
and since P(1) > 0 then
[1-3r (e +5+2)] >0
which is implies that Zi:1(ai + B; +%) <1 m.

Proposition 2.2:
If the GIR-GARCHY(1,1) model possess a limit cycle
of period k > 0 then this limit cycle is orbitally stable

if
1_[ [O'tﬂ 1] 1
Ot+j

jos + 5+ .|

E r—-i —
+2),1 =0 ..(2.18)

Proof.

Suppose that the model possess a limit cycle of
period k namely

02,0241, 0820 ey Ovi = OF
Near the neighborhood of each point of a limit cycle
with sufficient small radius &, such that ¢ — 0 for
n=>2placedo, =0, + & ,0,_1 =0p_1 + &4
The GJR-GARCH model given by :

of =w+ayxt_y +yile_ Xfy + B ody
By taking the conditional expectation of both sides
with respect to filters Ft, F,_; we get:

of =w+ a0t +— Ut 1+ B ot

2
Y1
0'152=W+(a1+7+ﬂ1)0'tz—1

(O-t+§t)2=W+(a1+ﬁ+ﬂ1)(o-t 1+ &-1)?

o + 8 + 208 =w+ (@ + 2+ ) (02

+§E 1 +20018-1)
By our assuming é2,é2., - 0

Y1
o2+ 206 =w+ (a1 + > + ,81) (&,
+ 20ty1ft 1)
of + 208 =w+ (a1 += +ﬁ1) (0f + 20¢-1&-1)
of + ZJtEt w+ (a1 +24 ,81)

+ (0‘1 + ? + .31) 20t—1ft—1
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of [1 - (a1 +%+B1)] —w + 20:¢;
= (“1 + % + ﬁl) 20¢-18¢-1
Butw = g2 [1 - (a1 +5 4 [?1)] we get :
200 = (a1 + )% + 31) 201184
£ = @ .(2.20)

From equation (2.20) and after k times we get:
(s +B+5)

O—18t-1

é = O Or—k—1|$t—k
But

(o + 52+ 5,)

$tok = O_—O't—(k+1) ft—(k+1)

t—k
L
(0(1 +8+ [»’1)
$ek = —[ ——  Ot4j-1 ¢t

Ot+j

=1
ft+k L[ _(a1+%+ﬁl)
j=1

ft Ot+j-1

The equation (2.20) is a linear difference equation
with a variable coefficients of the first order and its
solution is a very difficult process but what interests
us is that solution to the difference equation converge
to zero as t gets larger t — oo, this solution is
convergence, then this limit cycle is orbitally stable.
This convergence only takes place if and only if the
following condition is holding :

5?" <1 ..(2.21)
t
From condition (2.21) and equation (2.20) the GJR-

GARCH(1,1) is orbitally stable if :

_ ﬁ (e +B+p,)

Ot+j

Ot+j

St+k

St

O f[ <1

j=1

: /\1
‘ ™ A ,Mf
07\/\/\&\/« e /\Mf\ /V M\/w v

Monthly Mean Of Historical contracls dala for Brent crude ol dosed
I

TJPS

Ottj—1
|a1+ + | 1_[[0
t+j
k
H[GHH] < 1
Ot+j

k
j=1 |y + 22+ 4|
The GJR-GARCH model has no limit cycle.
3. Application
3.1 Data Description
We apply the stability condition of GJR-GARCH
model to the data that represent the Monthly Brent
Crude oil prices at closing in Dollars for the period
from January 1989 to December 2018 by 359
observations obtained from the website of
(https://sa.investing.com/commodities/brent-oil-
historical-data).
It is worth noting that the Financial Data and
Economic indicators Data are inherently unstable, so
forecasts have high errors and require us to make
some transforms for the purpose of obtaining
numerical stability .
3.2 Modeling and Creating the GJR-GARCH
model
We will apply a GJR-GARCH model to the Data
series and observe and verify that forecasted
conditional variance approaches the value of
unconditional variance, in addition to steps to detect
the heteroscedasticity, adjust the model, estimate
parameters, check it’s fitting, and then forecast the
conditional variance .
The program used in the process of creating and
programming the time series is the (MATLAB
R2020a) software and the programming method has
been put in an appendix with (m.file) a form at the
end of the study.
3.3 Data Analysis
First step, we enter data to create a time series and
we plot it, as figure (3-1) represe -nts the time series
of monthly of Historical contract data for Brent Crude
oil closed from: JAN. 1989 - DES. 2018.

“ H.f‘j \}\"'w

Jan 20

n 20 DES 201

Flgure (3-1) Time Series Plot Of Monthly Mean Of Hlstorlcal contracts data for Brent crude
oil closed From: JAN. 1989 - DES. 2018

After that, we transform the original series to the
Returns series, and this is done by using the
transformation known as the formula :

1 = logp
t—1
where 7, represent the Returns series and p;, p;_1

represent the observed data at ¢, t — 1 respectively, an
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instruction was used in MATLAB for this conversion
is r, = price2ret(p;), and figure (3-2) represent the
Returns series. It suffers from some volatility and
fluctuation at some values. For this reason, GJR-
GARCH are useful model to analyze the fluctuations
that accompany these phenomena, figure (3-3)

ok T

TJPS

represents  the  autocorrelation and  partial
autocorrelation functions of the data under study and
the volatility at some values are appear out of the

conference interval with boundaries + ? ® where N is
the simple size[8].

Y

\
fwm il

77H \\1¥ {

L 1

NIy
W

| | . ”\ J"l t |

“ M
| ” 1\ | .‘ 1A Mx‘t A
M‘\ I\ “"‘”‘l‘ ,‘\ “»‘\ “\V“"““\‘ I
ﬁ HH *Tﬂ ‘" “HH"H'L
‘ |

oy
i

-0.
Jan 1989 Jan2000

Months

Jan2010 DES 2018

Figure (3-2) The Returns Series Of Monthly Mean Of Historical contracts data for Brent
crude oil closed

Sample Autocorreiation

Sample Autocorrelation Function
T

Sample Partial Autocorrelation

1

) ; S -

2 4 6 8 10
Lag

Figure (3-3) the autocorrelation and partial autocorrelation functions

Second step, it is the procedure to detect the presence
of the effect of the heteroscedastic -ity variance by
finding the series of Error squares for the returns
series shown by the relationship e, = (1, — 7,)?

where 7, is the returns mean, and then drawing the
autocorrelation and partial autocorrelation functions
shown in the figure (3-4).
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Samgh utocoriston Function

Figure (3-4) square Error Return , autocorrelation and partial autocorrelation functions

It’s clear that the ACF still lie outside the boundaries effect and for 20 lags, through which it is evident as a
of conference interval at lags k = 1,2,4,5 also PACF result of the test suffering h = 1 from the presence of
atlags k = 1,4. the heteroscedasticity effect as shown in the table (3-
Third step, we perform a Ljung-Box test on the 1).

return series to detect the of the heteroscedasticity

Table (3-1) results a Ljung-Box test on the return series

Lagl 1 0.0003 13.2216 3.8415

Lag2 1 0.0013 13.3130 5.9915

Lag3 1 0.0040 13.3223 7.8147

Lag4 1 0.0015 17.5964 9.4877

LagS 1 0.0007 21.4240 11.0705
Lag6 1 0.0014 21.6414 12.5916
Lag7 1 0.0002 27.7876 14.0671
Lag8 1 0.0004 28.3725 15.5073
Lag9 1 0.0008 28.5685 16.9190
Lagl0 1 0.0007 30.5346 18.3070
Lagll 1 0.0000 40.8875 19.6751
Lagl2 1 0.0001 40.9109 21.0261
Lagl3 1 0.0000 44.3757 22.3620
Lagl4 1 0.0000 44.8436 23.6848
Lagl5 1 0.0000 50.0801 24.9958
Lagl6 1 0.0000 51.4142 26.2962
Lagl7 1 0.0000 51.4941 27.5871
Lagl8 1 0.0000 51.5162 28.8693
Lagl9 1 0.0001 52.2565 30.1435
Lag20 1 0.0000 55.0477 31.4104

Forth step, we fitting and estimating the parameters function, where this step is to choose a best order for
of the GJR-GARCH model, and the best way to the model by using the AIC and BIC information
estimate the parameters for the family GARCH criteria.

model is by using the maximum likelihood estimation
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square

line of
. It can be

0.01078848
the
of

2
t—1
.(3.2)

2
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From table (3-2) we get the best model with less
distribution
with

0.29567 +
(0.08774)

Vi

functions

~(3.1)

where I, is indicator function defined as
series

| 0062821

17 0.11321)°
0.0017262 _
1-0.839996

8)*(

2

+(0.096002)%-3
=0.29567 + 2222 4

2
t_
residual

15
0.062821 + 0.35601 = 0.839996 < 1

where z, ~iid N(0,1)
0.0017262
(70717 x 10~

0.25099
(0.12159)

Oifxt_i <0
lifx,; =0

3
J
autocorrelation

Ixt_l)x
0.35601
standardized residual series. The second stage is

By applying the stability conditions to the model,

we find that model is stable according to the

condition (2.10) then
+2
draw the normal

where 7; is standard residual series, r; is white

—ay+4y3
1-a+5+%;

21
2
0.0108

And the value of unconditional variance for GJR-
3
ot

GARCH model given in equation (2.15) is
1Bj

2
£ =
Ixt—i

0,

2

value of AIC and BIC is GIR-GARCH(3,1) model,

and become the formula for the model is :
stage is finding and calculating the standardized

Fifth step, this step complete in two stages. The first
residual series of the model through the equation:

noise residual for return series and o, is standard
deviation. Then draw the square standardized residual
distribution line and draw the autocorrelation and

perform a Ljung-Box test on its series
observed in figure (3-5) and table (3-3).

X = O¢Zg
a; +

(o)

7y =

series,
standardized
partial
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)

QQ Plot of Sample Data versus Standard Normal

iv,ng,w" b ‘\? ‘ﬂ\ ” ‘Mu 1\'\‘

i
ﬂ | \‘l‘y}

HM

T

T

Sampie Partial Autocorrelation Function

1
i

Figure (3-5) square standardized residual, distribution curve and autocorrelation and partial

autocorrelation functions of square standardized residual series

Table (3-3) Ljung-Box test for square standardized residual series

Lagl 0 0.4142 0.6666 3.8415

Lag? 0 0.4224 1.7235 5.9915

Lag3 0 0.6259 1.7500 7.8147

Lag4 0 0.7816 1.7501 9.4877

Lag5 0 0.8203 2.2037 11.0705
Lag6 0 0.8853 2.3461 12.5916
Lag7 0 0.8803 3.0507 14.0671
Lag8 0 0.7649 4.9313 15.5073
Lag9 0 0.8113 5.2573 16.9190
Lagl0 0 0.7073 7.1915 18.3070
Lagll 0 0.5983 9.2560 19.6751
Lagl2 0 0.6531 9.5761 21.0261
Lagl3 0 0.7207 9.6697 22.3620
Lagl4 0 0.7201 10.5611 23.6848
Lagl5 0 0.7807 10.5953 24.9958
Lagl6 0 0.7441 11.9979 26.2962
Lagl7 0 0.7407 12.9326 27.5871
Lagl8 0 0.7537 13.6166 28.8693
Lagl9 0 0.7992 13.7307 30.1435
Lag20 0 0.8345 13.9206 31.4104

From the table (3-3), we notice that the Ljung-Box
test results for the residual series of the GJR-
GARCH(3,1) model are not correlated, and a
heteroscedasticity has been removed. Therefore, the
variance equation for GJR-GARCH(3,1) model is

fitting, and thus the suitability of the model is
verified.
Sixth step, the last step we inferred and the
forecasted conditional variance for the series, we get
the conditional variance converge to unconditional
variance.

| 1 L L L 1 1

L L

Figure (3-6) the inferred and the forecasted conditional variance for the series
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Appendix 1

Data = [15.91 ;16.40 ;19.55 ;18.94 ;17.75 ;17.49 ;16.52 ;17.24 ;18.16 ;18.63 ;18.49 ;20.28 ;
20.06;19.48 ;18.38;17.12 ;16.24 ;16.14 ;19.84 ;26.75 ;39.10 ;34.41 ;29.20 ;28.27 ;

20.06 ;18.68 ;17.95;19.42 ;19.21 ;18.72 ;19.74 ;20.70 ;21.05 ;22.10 ;20.13 ;17.61 ;
18.15;17.55;18.14 ;19.66 ;20.79 ;20.41 ;20.47 ;19.87 ;20.34 ;19.45 ;18.84 ;18.29 ;
18.47;18.92 ;18.90 ;19.15 ;18.60 ;17.51 ;16.75 ;17.08 ;17.43 ;15.80 ;14.52 ;13.20 ;

14.22 ;13.35;13.25 ;15.69 ;16.45 ;17.52 ;18.59 ;16.24 ;17.15 ;16.92 ;17.11 ;16.50 ;

16.80 ;16.87 ;17.50 ;19.06 ;17.70 ;16.38 ;16.01 ;16.25 ;16.12 ;16.33 ;17.04 ;18.33 ;

16.52 ;17.76 ;19.41 ;19.02 ;17.80 ;18.91 ;18.90 ;20.78 ;23.21 ;22.67 ;22.77 ;23.81 ;
22.52:;18.85;19.38 ;18.52 ;19.40 ;18.51 ;18.94 ;18.51 ;19.90 ;20.02 ;18.94 ;16.52 ;

15.96 ;14.17 ;14.26 ;14.46 ;14.37 ;13.38 ;13.09 ;12.56 ;14.68 ;13.22 ;10.46 ;10.53 ;
11.53,;10.88 ;15.25;16.57 ;15.20 ;17.51 ;19.37 ;21.33 ;23.58 ;21.69 ;23.64 ;25.08 ;

25.97 ;28.09 ;24.77 ;23.89 ;28.31 ;30.57 ;26.93 ;31.72 ;29.84 ;30.76 ;31.88 ;23.87 ;

26.66 ;25.57 ;24.74 ;27.89 ;29.34 ;26.08 ;24.69 ;26.41 ;23.26 ;20.37 ;19.14 ;19.90 ;
19.18;21.33;25.92 ;26.47 ;24.45 ;25.58 ;25.44 ;27.47 ;28.75 ;25.72 ;26.16 ;28.66 ;
31.10;32.79 ;27.18 ;23.68 ;26.32 ;28.33 ;28.37 ;29.49 ;27.61 ;27.70 ;28.45 ;30.17 ;
29.18;32.23 ;31.51 ;34.48 ;36.58 ;34.50 ;40.03 ;39.61 ;46.38 ;48.98 ;45.51 ;40.46 ;

45.92 ;50.06 ;54.29 ;51.09 ;50.73 ;55.58 ;59.37 ;67.02 ;63.48 ;58.10 ;55.05 ;58.98 ;

65.99 ;61.76 ;65.91 ;72.02 ;70.41 ;73.51 ;75.15 ;70.25 ;62.48 ;59.03 ;64.26 ;60.86 ;

57.40 ;61.89 ;68.10 ;67.65 ;68.04 ;71.41 ;77.05 ;72.69 ;79.17 ;90.63 ;88.26 ;93.85 ;
92.21;100.10;100.30 ;111.36 ;127.78 ;139.83 ;123.98 ;114.05 ;98.17 ;65.32 ;53.49 ;45.59 ;
45.88 ;46.35 ;49.23 ;50.80 ;65.52 ;69.30 ;71.70 ;69.65 ;69.07 ;75.20 ;78.47 ;77.93 ;

71.46 ;77.59 ;82.70 ;87.44 ;75.65 ;75.01 ;78.18 ;74.64 ;82.31 ;83.15 ;85.92 ;94.75 ;
101.01;111.80;117.36 ;125.89 ;116.73 ;112.48 ;116.74 ;114.85 ;102.76 ;109.56 ;110.52 ;107.38 ;
110.98 ;122.66 ;122.88 ;119.47 ;101.87 ;97.80 ;104.92 ;114.57 ;112.39;108.70 ;111.23 ;111.11 ;
115.55;111.38 ;110.02 ;102.37 ;100.39 ;102.16 ;107.70 ;114.01 ;108.37 ;108.84 ;109.69 ;110.80 ;
106.40 ;109.07 ;107.76 ;108.07 ;109.41 ;112.36 ;106.02 ;103.19 ;94.67 ;85.86 ;70.15 ;57.33 ;
52.99 ;62.58 ;55.11 ;66.78 ;65.56 ;63.59 ;52.21 ;54.15 ;48.37 ;49.56 ;44.61 ;37.28 ;
34.74;35.97 ;39.60 ;48.13 ;49.69 ;49.68 ;42.46 ;47.04 ;49.06 ;48.30 ;50.47 ;56.82 ;

55.70 ;55.59 ;52.83 ;51.73 ;50.31 ;47.92 ;52.65 ;52.38 ;57.54 ;61.37 ;63.57 ;66.87 ;

69.05 ;65.78 ;70.27 ;75.17 ;77.59 ;79.44 ;74.25 ;77.42 ;82.72 ;75.47 ;58.71 ;53.80 ];
figure(1)

hold on

xlabel('Months');

h =gca;

h.XTick = [1 133 254 359];

h.XTickLabel = {'Jan 1989','Jan 2000','Jan 2010',... 'DES 2018'};

ylabel('Monthly Mean Of Historical contracts data for Brent crude oil closed');

title('Time Series Plot Of Monthly Mean Of Historical contracts data for Brent crude oil closed From: JAN.1990
- DES.2018")

plot(Data,'r");

hold off

r=price2ret(Data);

N =length(r);

meanR = mean(r);

error = r - mean(r);

squerror = error.*2;
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figure(2)

plot(r)

hold on

plot(meanR*ones(N,1),"--b"

xlim([0,N])

xlabel('Months");

h =gca;

h.XTick = [1 133 254 359];

h.XTickLabel = {'Jan 1989',"Jan 2000','Jan 2010',... 'DES 2018%;

ylabel('Returns’);

title('Plot The Returns Series Of Monthly Mean Of Historical contracts data for Brent crude oil closed")

hold off

figure(3)

hold on

xlabel('Months");ylabel('Squared Error");

title('Plot Of Squared Errors Return')

plot(squerror,'r’);

hold off

figure(4)

subplot(2,1,1)

autocorr(r)

subplot(2,1,2)

parcorr(r)

title('Partial Autocorrelation Functions Of Return Series')

figure(5)

subplot(2,1,1)

autocorr(squerror)

subplot(2,1,2)

parcorr(squerror)

title('Partial Autocorrelation Functions Of Squared Errors Return Series’)

[h,pValue,Qstat,cValue] = Ibgtest(r,'Lags’,[1:20])

Q=3;

pP=1;

Mdl=gjr(Q,P);

[EstMdI,EstParamCov,LogL,info] = estimate(Mdl,r);

numParams = sum(any(EstParamCov));

[AIC,BIC] = aicbic(LogL,numParams,N)

rng default;

V=infer(EstMdl,r);

figure(6)

plot(V,'r")

xlim([1,N])

h =gca;

h.XTick = [1 133 254 359];

h.XTickLabel = {'Jan 1989','Jan 2000','Jan 2010',...
'DES 2018,

title('Infered Conditional Variance')

StdRes=r./sqrt(V);

SquStdRes=StdRes."2;

figure(7)

subplot(2,2,1)

plot(SquStdRes,'r")

xlim([1,N])

title('Squared Standardized Residuals')

subplot(2,2,2)

qgplot(SquStdRes)

subplot(2,2,3)

autocorr(SquStdRes)

subplot(2,2,4)

parcorr(SquStdRes)
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[h,pValue,Qstat,cVValue]=lbgtest(SquStdRes, 'lags',[1:20])
Vf = forecast(EstMdl,200,"Y0',r,'V0',V);

figure(8)

plot(V,'Color',[.4,.4,.4])

hold on

plot(N+1:N+200,Vf,'r','LineWidth',2)

xlim([1,N+200])

TJPS

legend(‘'Inferred Variance','Forecasted Variance','Location’,'Northwest')
title('The Inferred And The Forecasted Conditional Variance For The Series Of Monthly Mean Of Historical

contracts data for Brent crude oil closed")
hold off

UnConVar=EstMdl.Constant/(1-EstMdl. GARCH{1}-EstMdl. GARCH{2}-EstMdl. GARCH{3}-

EstMdI.ARCH{1}-0.5.*EstMdl.Leverage{1})
rng default;

Vsim = simulate(EstMdl,200,'NumPaths',1000,'EQ",r,'V0O',V);

sim = mean(Vsim,2);

figure(9)

plot(Vf,'r','LineWidth',1.5)

hold on
plot(ones(200,1)*UnConVar,'k--','LineWidth',2)
xlim([1 200]);

title('The Forecasted Conditional Variance Of GJR-GARCH(3,1) Model Compared With The Theortical

GARCH models with application. Tikrit journal of

Variance')

legend(‘Forecasted Conditional Variance','Un-Conditional Variance','Location’,'southEast")
hold off

References

[1] Bollerslv, T. (1986). Generalized autoregressive

conditional  heteroskedasticity. journal  of

Econometrics, 31(3):307-327.

[2] Engle, R.F. (1982). Autoregressive Conditional
Heteroscedasticity with Estimates variance of United
Kingdom Inflation. journal of Econometrica, 50 (4):
987-1008.

[3] Francg, C. and Zakoian, J. M. (2019).GARCH
Models: Structure. Statistical Inference and Financial
Applications.2™ edn., John Wiley and Ltd
Publication:492 pp.

[4] GLOSTEN, L.R. ; JAGANNATHAN, R. and
RUNKLE, D.E. (1993). On the Relation between the
Expected Value and the Volatility of the Nominal
Excess Return on Stocks. The Journal of Finance,
485 (5): 1779-1801.

[5] Mohammad , A.A. and Salim, A.J. (2007).
Stability of Logistic Autoregressive model. Qatar
Univesity of scince journal, 27:17-28.

[6] Mohammad, A.A. and Gannam, A.K. (2010).
Stability of Cauchy Autoregressive model. journal of
pure and applied scince, Salahaddin University
Hawler (special Issue):52-62.

[7] Mohammad, A.A. and Ghaffar, M.K. (2016).
Astudy on stability of Conditional variance for

pure scince, 21 (4):160-169.

[8] Mohammad, A.A. and Mudhir, A.A. (2018).
Dynamical approach in studying stability condition of
exponential (GARCH) models. Journal of King Saud
University - Science, Vol.32 (1):272-278.

[9] Mohammad, A.A. and Salim, A.J. (1996). The
Analysis and Modeling of the time series of annual
mean temprature in Mosul City. Rafidain Journal of
Science,7 (1): 37-48.

[10] Nelson, D.B. (1991). Conditional
Heteroskedasticity in Asset Returns: A New
Approach”, Econometrica, 59 (2):347-370.

[11] Ozaki, T. (1985). Non-linear time series models
and Dynamical systems. Handbook of statestics.
Hannen et al. Elsevier science publishers Rv ,5
(S):25-83.

[12] Wiphatthanananthakula, C. and Sriboonchittab,
S. (2010). The Comparison among ARMA-GARCH,
-EGARCH, -GJR. The Thailand Econometrics
Society journal, 2 (2):140-148.

[13] Yuan Chen, M. (2013).Time series Analysis:
Conditional Volatility models. Dep. of Finance.
National chung Hsing University: 1-42 pp

155



Tikrit Journal of Pure Science Vol. 26 (2) 2021 I JP S
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b, S, S desls, Slusllly copulad] psle LS Clualyl) aud
oadlall
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