
  

 

  

Tikrit Journal of Pure Science Vol. 28 (1) 2023 
   

89 

 

 

Tikrit Journal of Pure Science 
ISSN: 1813 – 1662 (Print)  --- E-ISSN: 2415 – 1726 (Online) 
 

Journal Homepage: http://tjps.tu.edu.iq/index.php/j 

 

 

PERFORMANCE REFINEMENT OF CONVOLUTIONAL NEURAL 

NETWORK ARCHITECTURES FOR SOLVING BIG DATA 

PROBLEMS 
Saud Aljaloud 

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia 

https://doi.org/10.25130/tjps.v28i1.1270  

A r t i c l e  i n f o. 
Article history: 

-Received:                             18 / 11 / 2022 

-Received in revised form:  10 / 12 / 2022 

-Accepted:                              9 / 1 / 2023 

-Final Proofreading:             7 / 2 / 2023 

-Available online:               20 /  2 / 2023 

Keywords: MNIST database, CIFAR10, GPU 

Bigdata, Deep learning, CNN, Theano and 

TensorFlow, MNIST database 
Corresponding Author: 

Name: Saud Aljaloud 

E-mail: s.aljaloud@uoh.edu.sa 

Tel: 

©2022 COLLEGE OF SCIENCE, TIKRIT 

UNIVERSITY. THIS IS AN OPEN ACCESS 

ARTICLE UNDER THE CC BY LICENSE 

http://creativecommons.org/licenses/by/4.0/ 

 
 

ABSTRACT 

The use of more examples than contrasted ones to compare 

neural network frameworks through using the MNIST 

database is considered a good research method. This is 

because this database is the subject of active research at the 

moment and has produced excellent results. However, in 

order to be trained and deliver accurate results, neural 

networks need a sizeable amount of sample data, as will be 

covered in more detail later. Because of this, big data experts 

frequently encounter problems of this nature. Therefore, two 

of the most well-liked neural network frameworks, Theano 

and TensorFlow, were compared in this study for how well 

they performed on a given problem. The MNIST database 

was used for this specific problem, represented by the 

recognition of handwritten digits from one to nine. As the 

project description implied, this study would not present a 

standard comparison because of this; instead, it would present 

a comparison of these networks' performance in a Big Data 

environment using distributed computing. The FMNIST or 

Fashion MNIST database and CIFAR10 were also tested 

(using the same neural network design), extending the scope 

of the comparison beyond MNIST. The same code was used 

with the same structure thanks to the use of a higher-level 

library called Keras, making use of the aforementioned 

support (in our case, Theano or TensorFlow). There has been 

a surge in open-source parallel GPU implementation research 

and development as a result of the high computational cost of 

training CNNs on large data sets. However, there are not 

many studies on assessing the performance traits of those 

implementations. In this study, these implementations were 

compared carefully across a wide range of parameter 

configurations, in addition to investigating potential 

performance bottlenecks, and identifying a number of areas 

that could use more fine-tuning. 

I. Introduction  
A large amount of data is collected by states, 

institutions, or individuals in order to draw 

meaningful conclusions from it and use it as needed. 

Data created by materials such as numbers, texts, 

expressions, figures, and graphics has been 

transferred to electronic media using computers in 

every field [5]. With computers, the internet, and 

related technologies becoming more prevalent in all 

aspects of life, the data produced by these 

technologies is also becoming more prevalent. The 

increasing prevalence of information technologies has 

changed people's living, working, and environmental 

conditions; places, professions, and employees have 

become "mobile," as have the devices they use. 

http://tjps.tu.edu.iq/index.php/j
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However, in terms of diversity and volume, the 

resulting data has reached very different and large 

dimensions. The increase in mobility, the widespread 

use of social networks, the development of various 

tracking systems (sensors, barcodes, data matrix, 

RFID systems, etc.) technologies, the increase in the 

accessibility of communication technologies, the 

transfer of many business lines, particularly 

commercial transactions, to the electronic 

environment, and the diversity of data produced, as 

well as the speed and amount of collection, have all 

resulted in significant increases in the speed and 

amount of collection. This trend is expected to 

continue. While Machine-to-Machine 

Communication (M2M) is a technology that enables 

devices to be remotely monitored, managed, and 

communicated with each other via the sim card, 

sensors, electronic circuits, and internet network 

installed in the devices. It has a wide range of 

applications in the lives of both individuals and 

businesses. The use of these technologies in many 

fields, including vehicle tracking, medical 

automation, smart home appliances, metre reading, 

logistics, security, and agriculture, has necessitated 

the analysis of the data transmitted by the devices. 

The increasing prevalence of wireless sensors and the 

infinite number of objects that can be addressed with 

Internet Protocol Version 6 (IPv6) have led to an 

increase in the number of devices that will be 

connected to the Internet. According to the 

predictions of Cisco and IBM, 50 billion devices 

would be included in the internet network in 2020 [5]. 

Parallel to this development, M2M systems [6-10], in 

which a hardware is connected with a single 

application and today almost any hardware can be 

easily interconnected with various applications or 

devices, Internet of Things (IoT), Internet of 

Everything (IoE), Network of Things (WoT) and 

Network of Everything (WoE) have evolved into 

such environments. In these systems, where the real 

and virtual worlds are very close to each other and 

smart environments occur in every part of life, a huge 

volume of data is produced and most of this data is 

unstructured. These data, which can be in many types 

such as pictures, audio, text and video and transferred 

over networks, have also started to be stored in cloud 

environments. Another issue related to these data is 

that they have a variable and dynamic, in other 

words, flowing structure, especially human-sourced 

data, such as social media data. On the one hand, new 

data from the devices is included in the system or 

some data is interrupted, on the other hand, changes 

may occur in the existing data. The analysis of the 

collected data therefore becomes more complex. For 

this reason, the concept of "big data" has become 

very controversial, especially in recent years [11-13]. 

Convolutional neural networks (CNN) have lately 

demonstrated promising results in the area of image 

classification [1]. Most of these systems were 

dependent on specialized libraries or frameworks. In 

this article, Theano and TensorFlow, two well-liked 

CNN frameworks are examined [2]. The target 

challenge is to identify 1–9 handwritten digits. 

MNIST, a well-researched database, is employed for 

this task because it offers great chances to contrast 

several frameworks with actual data. The study also 

clarifies that CNN needs a lot of data to train well and 

generate accurate results. Often, by seeing such 

problems through the lens of big data, the solutions 

can be discovered [3]. A standardized comparison of 

the networks' performance in a Big Data setting using 

distributed computing is given, as implied by the 

document's title. The same code with the same 

structure can be reused using the higher-level library 

"Keras," which uses the mentioned capabilities 

(Theano or TensorFlow) of Ease of use [7-10]. 

The primary issue is comparing a CNN's performance 

in a classification challenge involving images from 

the MNIST database [7]. Keras is used as the 

backend, with either TensorFlow or Theano being 

compared. This CNN's effectiveness is measured in 

terms of assessment error and training time, allowing 

for future determination of the best backend in any 

given scenario. In addition, the CIFAR10 database 

and the Fashion MNIST (FMNIST) database, both of 

which contain images of ten different types of black 

and white clothing, are used for testing (10 colour 

images of dogs, birds, deer, cats, frogs, horses, boats, 

planes, cars and trucks). However, in order to speed 

up the overall process, the same CNN is trained on 

multiple cores (CPUs and GPUs) at the same time. 

The MNIST and FMNIST datasets are examined for 

the final scenario. According to [12], the primary goal 

is to compare the execution times of each backend to 

determine which is more efficient for distributed 

computing. 

A. Research Methodology, Proposed Solution and 

Implementation  

This section is divided into three parts. First, the 

common parts contained in the solution of all 

experiments carried out are analyzed. These parts are 

the neural network's architecture, the programming 

language used for its realization and the framework 

used. Then, the solution and the proposed 

implementation for each particular case (distributed 

and non-distributed) are discussed. The order of this 

section is shown below: 

1. Network architecture, programming language and 

framework. 

2. Solution and implementation of non-distributed 

case. 

3. Solutions and implementation of distributed case. 

B. Network Architecture, Programming Language 

And Framework 

1) Programming Language 

This project used Python and ReLu, the premier 

language for machine learning architectures.  

2) Network Architecture 

This project's main case, MNIST, was improved for a 

network architecture, which was then applied with 
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additional databases. FMNIST and CIFAR10 were 

projected to perform poorly in terms of evaluating 

error analysis. The network's MNIST training error 

was within desirable margins for the chosen 

architecture, as provided in [4]. The network's layers 

were as follows: 

• Convolutional layer of 30 features with a size of 

5x5 pixels and with the activation function of 

rectification or ReLu. 

• Max-pooling layer with a size of 2x2 pixels. 

• Another convolutional layer but this time with 15 

features, size 3x3 pixels and ReLu activation 

function. 

• A layer with a maximum pooling size of 2x2 

pixels. 

• To prevent overtraining, the Dropour layer was in 

charge of excluding a specific number of neurons, in 

this case 20%. 

• The following fully connected layers processed 

the data that was transformed into a vector by the 

Flatten layer. 

• Layer with ReLu activation function and 128 fully 

connected neurons. 

• Layer with ReLu activation function and 50 fully 

connected neurons. 

• Output layer with 10 neurons (one for each class). 

3) Framework 

As mentioned in this paper, all experiments employed 

Keras with TensorFlow and Theano backends to 

compare performance. 

C. Solution and Implementation of Non-Distributed 

Case 

The experiment was launched on the farm with 

specifying to use either a GPU or a CPU; so, the 

farm's resource manager either reserved one for you 

or allocated a specific processor. To reduce execution 

time, the NVIDIA GeForce RTX 2080 Ti was the 

farm's most powerful GPU. After choosing the neural 

network model and processor, it was time to decide 

how to train and compare this model. To get a true 

picture of training times and evaluation error, ten 

experiments per instance were performed and the 

mean and variance were provided. The overall 

execution time included the connection with the farm 

and its management, system, and user times. The 

GPU execution time was taken into account. The 

model was trained for 200 epochs; however, 

validation values were received epoch by epoch to 

track precision, in addition to having error graph. 

Knowing which data would be compared, just the 

experiments—two for each database—remained (one 

for TensorFlow and one for Theano). The mean and 

variance of each group of ten experiments were 

displayed. These experiments are listed below: 

1. MNIST used Theano and TensorFlow as the 

backends. 

2. FMNIST used Theano and TensorFlow as the 

backends. 

3. CIFAR10 used Theano and TensorFlow as the 

backends. 

They were six from the prism of three tests (MNIST, 

FMNIST, and CIFAR10) with the two backend 

variations for comparison. Thus, only three cases of 

these six in groups of two were analysed for 

experimentation. 

D. Distributed Case Solution and Implementation 

The Elephas library converted Keras code into Spark 

with minimal instructions, allowing Spark's 

distributed case to keep the network's core and 

perform effective analysis [9]. The study used 

MNIST and FMNIST data and only four simulations 

per experiment. To provide variety, MNIST 

experiments were run on five machines or nodes with 

four cores each and four machines with five cores 

each. Starting with the last enumeration in the 

previous section, the experiments are listed as 

follows: 

1. Performance comparison of MNIST that spread 

across five nodes with four cores per node and four 

nodes with five cores per node using the Theano and 

TensorFlow backends. 

2. A performance comparison between the Theano 

and TensorFlow backends for FMNIST utilizing the 

distribution that produced the best results for MNIST. 

3. The data from the undistributed case was utilized 

to establish how many epochs were necessary, and 

the number of epochs to be investigated was fixed. 

II. Experiment and Analysis 
The comparative results from each experiment were 

shown, followed by a succinct interpretation of each: 

A. Evaluation of MNIST Performance on Both the 

Theano and TensorFlow Backends 

The comparison figure of the times in this example is 

shown below: 
 

 
Fig. 1: Comparison of execution times for the case of 

non-distributed MNIST 
 

 
Fig. 2: Comparison of validation errors by epoch for the 

case of non-distributed MNIST 
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It was observed that Theano is clearly superior to 

TensorFlow in terms of timing. Now, it is time to 

show graphically the evolution of the mean of the 

error per period that they have had and its standard 

deviation (represented by the character *) in the cases 

of Theano and TensorFlow: 
 

 
Fig.3: MNIST Theano, 50 and 200 epoch validation error mean and standard deviation 

 

 
Fig. 4: MNIST TensorFlow, 50 and 200 epoch validation error mean and standard deviation 

 

Finally, the two figures of this comparison were 

broken down into periods. In this case, it was clear 

that both Theano and TensorFlow have very similar 

features and a similar evolution. Both of them 

achieved a validation error below 1% from 10 

epochs, a very optimal figure. In order to avoid 

overloading the document with plots, only the 50-

epoch plots for Theano and TensorFlow were shown 

for the following experiments. 

B. Evaluation of FMNIST Performance on Both the 

Theano and TensorFlow Backends 

Now, the times obtained by training the FMNIST 

database are shown as follows:  
 

 
 

 
Fig. 6: Comparison of validation errors by epoch for the 

case of non-distributed FMNIST 
 

As was the case with MNIST, it was observed that 

Theano is clearly superior in time. Now, it is time to 

present the graphs (only those of 50 epochs) and the 

comparative table in terms of validation errors: 

 

 

Fig. 5: Comparison of execution times for the case 

of non-distributed FMNIST  
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Fig. 7: The 50 epoch FMNIST Theano and TensorFlow validation error mean and standard deviation 

 

Table 1: Comparison of the data obtained using distributed computing with the MNIST and FMNIST 

databases 

 Setting Backend 
Total average time  Average execution Average handling 

Mean evaluation error 

(minutes) time per core (minutes) time per task (ms) 

MNIST 

5 nodes with 4 TN* 50 41 80 0.74% 

cores per node TF** 8.29 6.95 81.25 0.75% 

4 nodes with TN* 57 40 87.75 0.70% 

5 cores per node TF** 9.31 7.18 83.5 0.74% 

FMNIST  TN* 61.71 27.03 77.52 0.091 

* Theano, ** TensorFlow 
 

 
Fig. 8: Comparison of execution times for the case of 

CIFAR10 not distributed 
 

 

The faults were extremely identical between each 

backend, just like in MNIST; however, they were 

much more severe in this situation because the 

network was not designed for this database. 

As illustrated in figure 8, the behavior of the previous 

cases was maintained in the scenario where CIFAR10 

was not distributed. Figure 9 compares validation 

errors by epoch. A deep learning model's 

performance on the validation set was measured 

using a metric called validation loss. The dataset's 

validation set is a section set aside to check the 

model's efficacy. Similar to the training loss, the 

validation loss was determined by adding the errors 

for each example in the validation set. 

The similarity between the backends was maintained; 

in this case, the network was much less optimized and 

the errors were much higher in general. 

 

 
Fig. 10: Mean and standard deviation of the validation error in 50 epochs, CIFAR10 Theano (left) and 

CIFAR10 Tensor Flow (right) 
 

Fig. 9: Comparison of validation errors by epoch 

for the case of CIFAR10 not distributed 
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C. Evaluation of the Performance of the Theano and 

TensorFlow Backends Using MNIST Distributed 

Across Five Nodes with Four Cores Each and Four 

Nodes with Five Cores Each 

Starting experiments on GPUs was difficult, so they 

were started on CPUs [8]. Theano CPU execution can 

take up to an hour, so instead of ten simulations like 

in the non-distributed case, four were run. Finally, 50 

epochs were ideal for training from the non-

distributed case, so they were started immediately. 

The Spark interface reported how many tasks were 

executed, in which core and node, and how many 

total tasks were involved. It also provided task 

management, parallelization, and median execution 

times across tasks and cores. To avoid filling the 

document with images of all executions, images of 

the Spark interface from a Theano backend and 

TensorFlow backend execution was included, but the 

data representing the averages of all executions was 

compared. The data to compare were as follows: 

• The length of time, on average, taken to complete 

the execution since Spark launched the process. 

• The median execution times averaged across all 

tasks (since each task was executed in a core, it could 

be said that this time was also the mean per core). It 

was assumed that this data represented the average 

execution time per core even though it actually 

represented the average of medians. 

• The management and distribution time allocated 

to each task in Spark was referred to as "Garbage 

collection time" or GC Time. The average of the 

medians that the experiment yielded was also 

calculated from this data, but it was used to determine 

the average management time per task. 

• Finally, each case's mean evaluation error was 

calculated. 

Theano's management time was low, but its execution 

times were much longer than TensorFlow's (see Table 

1) (one was in milliseconds and the other in the order 

of minutes, respectively). Because they were similar 

to each other and the non-distributed case, the 

computational environment did not affect average 

evaluation errors. The FMNIST experiment used 

Spark with 5 nodes and 4 cores because it was 

slightly faster across all measured times. 

D. Comparison of Performance Using the 

Distribution that Produced the Best Results for 

MNIST and FMNIST Using the Theano and 

TensorFlow Backends 

This case was not taken into consideration because 

the neural network was not optimized for FMNIST 

and the probability of error data was not obtained 

with the network. TensorFlow and Theano 

simulations were run twice for each example to create 

a comparison table with results averages like the 

previous case. The previous experiment concluded 

that this example used five nodes with four cores 

each. Theano had much higher execution times than 

TensorFlow, but the evaluation error was very 

similar. Non-distributed case and system management 

and parallelization were negligible compared to 

execution times. 

III. CONCLUSIONS AND FUTURE WORK 
Theano was more efficient in convolutional neural 

network training times than TensorFlow. Even 

though the error was very similar in both cases, 

despite the obvious loss of precision with the 

FMNIST database and even more so with CIFAR10 

versus MNIST. Thus, Theano is a better backend for 

executions like those in this document. Since the 

error is constant after 50 epochs, more training 

epochs are not recommended. Since the distributed 

case was run on CPUs instead of GPUs, this setup's 

time savings cannot be compared. GPUs in both 

environments reduced resource management and 

parallelization time, which was much lower than 

execution time. Given the significant time difference 

between using Theano and TensorFlow as a backend, 

it was concluded that Theano is not well optimized to 

be launched in a distributed environment or over 

CPUs. In some cases, the MNIST execution examples 

had performed better with a configuration of five 

machines with four cores each rather than four 

machines with five cores each. Evaluation error had 

remained constant for Theano and TensorFlow in 

case of four-core machines. Evaluation errors were 

similar in distributed and non-distributed executions. 

This document demonstrated that Theano is not very 

well optimized when using distributed computing 

through Spark on several CPUs. It may be 

worthwhile to conduct further research to determine 

whether this is because resources are distributed 

unevenly or because Theano is being run on CPUs 

rather than GPUs.   
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 تحسين أداء هياكل الشبكات العصبونية الإلتفافية لحل مشكلات البيانات الضخمة 
 الملخص

ثارر   لكرربا ب  لعيرربلإ ت   يلتم  ترر  ثرر  خررال  سررتام أ    ررم  لات  رر ب  ل للإختبرر  ب لاررم  ثرر  إسررتام أ ا نةرر  ثة   رر إسررتام أ ثر رر  ثرر  ث رر  يعتبرر 
MNIST   وذلر  ن     ررم   لبت  ر ب  .جيررم  بح تر ا نةرMNIST   هر  ثلإوررلإح بحرط  كررل قر   للإ ررو  لحر ل  و رم ثسررم ب  ر   ترر    ث تر   . وثرر

 ب  لعيرربلإ ت   يلتم  ترر  إلررك  ررم  ابيرر  ثرر   لبت  رر ب ليرر ي  يختبرر     يررط سرريتد ن  ول رر  ثرر  ثجررت  لتررم ني ونةررميد  ترر    اجتةرر   نحترر    لكرربا ذلرر  
ن ررو ثة   رر     رري  ثرر  ثر رر  ثارر   لرركل  ب زنررم ثرر   لتم لارريت   ةرر  . ل ررك   لارربي  ا يرر    ثرر  الإ جررل خبرر  ا  لبت  رر ب  لعررا   ثكرر رت ثرر  هررك   ل ررلإح. 

ت  ر ب   ق  هكه  لم  س  ل مى جلإا  ثا      ق  ثكال  ثعي  . نرد  سرتام أ    رم  لا TensorFlowو  Theano ش       لتم  ت  لكبا ب  لعيبلإ ت  
MNIST   قرر   هرركه  ن  رر أ  ل اتلإ رر  باررل  ليررم ثرر  و  ررم إلررك ناررع . وا رر  اررلإ   ولارر   ل كرر وح   ث  لرر  قرر   لتعرر    لررك  ل حررما  ل رركه  ل كررال

ثة   رر  لارري  ثا ا هرركه  لكرربا ب قرر  لايترر   لبت  رر ب  لعررا   ب سررتام أ  سررتةمألرر   ةررمأ قةررل ثة   رر  جت سررت  ل ررك   لارربي نحماررم    لاررم   ثرر  ذلرر     لم  سرر 
)ب سرتام أ  CIFAR10و  Fashion MNISTثو  FMNIST. سريتد ثيعر    ختبر      رم  لات  ر ب Distributed Computing لحلإسب   ل لإ  ر  

. سريتد إسرتام أ  مرس  لالإ   ثتر  ثر   مرس  ل تارت وارت MNISTث   الإس   ط ق  ل ة   ر  إلرك ثر  بعرم  (  مس ني تد  لكبا ب  لعيبلإ ت   يلتم  ت 
(. TensorFlowثو  Theano   لت ررر  كالإ  ث ررراه )قررر    و لتررر  نارررتامأ  لرررم د  ل رررKerasإسرررتام أ ثاتبررر  ذ ب ثارررتلإى ث لرررك ناررر ك  هرررك  بمعرررت

 CNN ل تررلإ  م ثمتررلإم  ل يررم   تتلرر  للتسلمرر   لحارر لات   لع لترر  لتررم ني شرربا ب  GPUقرر  ثلرر ل نطبيرر  ثلارربه ه رر ا  نرر ا  قرر   لبحررلإ  و لتطررلإن  
هرركه  ن ررو ثة   ر نةيرتد سر  ب ثا ا نلرر   لتطبتةر ب. قرر  هركه  لم  سر    رر  لعماررم ثر   لم  سر ب  لرك ثل لإ ر ب  لبت  رر ب  لسبير  . وثر  ذلرر     نلإجرم  

 رما   ثر   ل لرر  ب  ونحماررم لحر  ب  ل حت ررت قي ر   لترع ي   لرك   ا ا   ب يورر ق   لرك ا  سر  ب  ل تيير   لتطبتةر ب بع  ير   بر  ثل لإ رر  و سرع  ثر  
  لت  ي ا  ث  يحا  قي    نا ا.
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