

Tikrit Journal of Pure Science Vol. 28 (1) 2023

89

Tikrit Journal of Pure Science
ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

PERFORMANCE REFINEMENT OF CONVOLUTIONAL NEURAL

NETWORK ARCHITECTURES FOR SOLVING BIG DATA

PROBLEMS
Saud Aljaloud

College of Computer Science and Engineering, University of Ha’il, Ha’il, Saudi Arabia

https://doi.org/10.25130/tjps.v28i1.1270

A r t i c l e i n f o.
Article history:

-Received: 18 / 11 / 2022

-Received in revised form: 10 / 12 / 2022

-Accepted: 9 / 1 / 2023

-Final Proofreading: 7 / 2 / 2023

-Available online: 20 / 2 / 2023

Keywords: MNIST database, CIFAR10, GPU

Bigdata, Deep learning, CNN, Theano and

TensorFlow, MNIST database
Corresponding Author:

Name: Saud Aljaloud

E-mail: s.aljaloud@uoh.edu.sa

Tel:

©2022 COLLEGE OF SCIENCE, TIKRIT

UNIVERSITY. THIS IS AN OPEN ACCESS

ARTICLE UNDER THE CC BY LICENSE

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

The use of more examples than contrasted ones to compare

neural network frameworks through using the MNIST

database is considered a good research method. This is

because this database is the subject of active research at the

moment and has produced excellent results. However, in

order to be trained and deliver accurate results, neural

networks need a sizeable amount of sample data, as will be

covered in more detail later. Because of this, big data experts

frequently encounter problems of this nature. Therefore, two

of the most well-liked neural network frameworks, Theano

and TensorFlow, were compared in this study for how well

they performed on a given problem. The MNIST database

was used for this specific problem, represented by the

recognition of handwritten digits from one to nine. As the

project description implied, this study would not present a

standard comparison because of this; instead, it would present

a comparison of these networks' performance in a Big Data

environment using distributed computing. The FMNIST or

Fashion MNIST database and CIFAR10 were also tested

(using the same neural network design), extending the scope

of the comparison beyond MNIST. The same code was used

with the same structure thanks to the use of a higher-level

library called Keras, making use of the aforementioned

support (in our case, Theano or TensorFlow). There has been

a surge in open-source parallel GPU implementation research

and development as a result of the high computational cost of

training CNNs on large data sets. However, there are not

many studies on assessing the performance traits of those

implementations. In this study, these implementations were

compared carefully across a wide range of parameter

configurations, in addition to investigating potential

performance bottlenecks, and identifying a number of areas

that could use more fine-tuning.

I. Introduction
A large amount of data is collected by states,

institutions, or individuals in order to draw

meaningful conclusions from it and use it as needed.

Data created by materials such as numbers, texts,

expressions, figures, and graphics has been

transferred to electronic media using computers in

every field [5]. With computers, the internet, and

related technologies becoming more prevalent in all

aspects of life, the data produced by these

technologies is also becoming more prevalent. The

increasing prevalence of information technologies has

changed people's living, working, and environmental

conditions; places, professions, and employees have

become "mobile," as have the devices they use.

http://tjps.tu.edu.iq/index.php/j
https://doi.org/10.25130/tjps.v28i1.1270
http://creativecommons.org/licenses/by/4.0/

Tikrit Journal of Pure Science Vol. 28 (1) 2023

90

However, in terms of diversity and volume, the

resulting data has reached very different and large

dimensions. The increase in mobility, the widespread

use of social networks, the development of various

tracking systems (sensors, barcodes, data matrix,

RFID systems, etc.) technologies, the increase in the

accessibility of communication technologies, the

transfer of many business lines, particularly

commercial transactions, to the electronic

environment, and the diversity of data produced, as

well as the speed and amount of collection, have all

resulted in significant increases in the speed and

amount of collection. This trend is expected to

continue. While Machine-to-Machine

Communication (M2M) is a technology that enables

devices to be remotely monitored, managed, and

communicated with each other via the sim card,

sensors, electronic circuits, and internet network

installed in the devices. It has a wide range of

applications in the lives of both individuals and

businesses. The use of these technologies in many

fields, including vehicle tracking, medical

automation, smart home appliances, metre reading,

logistics, security, and agriculture, has necessitated

the analysis of the data transmitted by the devices.

The increasing prevalence of wireless sensors and the

infinite number of objects that can be addressed with

Internet Protocol Version 6 (IPv6) have led to an

increase in the number of devices that will be

connected to the Internet. According to the

predictions of Cisco and IBM, 50 billion devices

would be included in the internet network in 2020 [5].

Parallel to this development, M2M systems [6-10], in

which a hardware is connected with a single

application and today almost any hardware can be

easily interconnected with various applications or

devices, Internet of Things (IoT), Internet of

Everything (IoE), Network of Things (WoT) and

Network of Everything (WoE) have evolved into

such environments. In these systems, where the real

and virtual worlds are very close to each other and

smart environments occur in every part of life, a huge

volume of data is produced and most of this data is

unstructured. These data, which can be in many types

such as pictures, audio, text and video and transferred

over networks, have also started to be stored in cloud

environments. Another issue related to these data is

that they have a variable and dynamic, in other

words, flowing structure, especially human-sourced

data, such as social media data. On the one hand, new

data from the devices is included in the system or

some data is interrupted, on the other hand, changes

may occur in the existing data. The analysis of the

collected data therefore becomes more complex. For

this reason, the concept of "big data" has become

very controversial, especially in recent years [11-13].

Convolutional neural networks (CNN) have lately

demonstrated promising results in the area of image

classification [1]. Most of these systems were

dependent on specialized libraries or frameworks. In

this article, Theano and TensorFlow, two well-liked

CNN frameworks are examined [2]. The target

challenge is to identify 1–9 handwritten digits.

MNIST, a well-researched database, is employed for

this task because it offers great chances to contrast

several frameworks with actual data. The study also

clarifies that CNN needs a lot of data to train well and

generate accurate results. Often, by seeing such

problems through the lens of big data, the solutions

can be discovered [3]. A standardized comparison of

the networks' performance in a Big Data setting using

distributed computing is given, as implied by the

document's title. The same code with the same

structure can be reused using the higher-level library

"Keras," which uses the mentioned capabilities

(Theano or TensorFlow) of Ease of use [7-10].

The primary issue is comparing a CNN's performance

in a classification challenge involving images from

the MNIST database [7]. Keras is used as the

backend, with either TensorFlow or Theano being

compared. This CNN's effectiveness is measured in

terms of assessment error and training time, allowing

for future determination of the best backend in any

given scenario. In addition, the CIFAR10 database

and the Fashion MNIST (FMNIST) database, both of

which contain images of ten different types of black

and white clothing, are used for testing (10 colour

images of dogs, birds, deer, cats, frogs, horses, boats,

planes, cars and trucks). However, in order to speed

up the overall process, the same CNN is trained on

multiple cores (CPUs and GPUs) at the same time.

The MNIST and FMNIST datasets are examined for

the final scenario. According to [12], the primary goal

is to compare the execution times of each backend to

determine which is more efficient for distributed

computing.

A. Research Methodology, Proposed Solution and

Implementation

This section is divided into three parts. First, the

common parts contained in the solution of all

experiments carried out are analyzed. These parts are

the neural network's architecture, the programming

language used for its realization and the framework

used. Then, the solution and the proposed

implementation for each particular case (distributed

and non-distributed) are discussed. The order of this

section is shown below:

1. Network architecture, programming language and

framework.

2. Solution and implementation of non-distributed

case.

3. Solutions and implementation of distributed case.

B. Network Architecture, Programming Language

And Framework

1) Programming Language

This project used Python and ReLu, the premier

language for machine learning architectures.

2) Network Architecture

This project's main case, MNIST, was improved for a

network architecture, which was then applied with

Tikrit Journal of Pure Science Vol. 28 (1) 2023

91

additional databases. FMNIST and CIFAR10 were

projected to perform poorly in terms of evaluating

error analysis. The network's MNIST training error

was within desirable margins for the chosen

architecture, as provided in [4]. The network's layers

were as follows:

• Convolutional layer of 30 features with a size of

5x5 pixels and with the activation function of

rectification or ReLu.

• Max-pooling layer with a size of 2x2 pixels.

• Another convolutional layer but this time with 15

features, size 3x3 pixels and ReLu activation

function.

• A layer with a maximum pooling size of 2x2

pixels.

• To prevent overtraining, the Dropour layer was in

charge of excluding a specific number of neurons, in

this case 20%.

• The following fully connected layers processed

the data that was transformed into a vector by the

Flatten layer.

• Layer with ReLu activation function and 128 fully

connected neurons.

• Layer with ReLu activation function and 50 fully

connected neurons.

• Output layer with 10 neurons (one for each class).

3) Framework

As mentioned in this paper, all experiments employed

Keras with TensorFlow and Theano backends to

compare performance.

C. Solution and Implementation of Non-Distributed

Case

The experiment was launched on the farm with

specifying to use either a GPU or a CPU; so, the

farm's resource manager either reserved one for you

or allocated a specific processor. To reduce execution

time, the NVIDIA GeForce RTX 2080 Ti was the

farm's most powerful GPU. After choosing the neural

network model and processor, it was time to decide

how to train and compare this model. To get a true

picture of training times and evaluation error, ten

experiments per instance were performed and the

mean and variance were provided. The overall

execution time included the connection with the farm

and its management, system, and user times. The

GPU execution time was taken into account. The

model was trained for 200 epochs; however,

validation values were received epoch by epoch to

track precision, in addition to having error graph.

Knowing which data would be compared, just the

experiments—two for each database—remained (one

for TensorFlow and one for Theano). The mean and

variance of each group of ten experiments were

displayed. These experiments are listed below:

1. MNIST used Theano and TensorFlow as the

backends.

2. FMNIST used Theano and TensorFlow as the

backends.

3. CIFAR10 used Theano and TensorFlow as the

backends.

They were six from the prism of three tests (MNIST,

FMNIST, and CIFAR10) with the two backend

variations for comparison. Thus, only three cases of

these six in groups of two were analysed for

experimentation.

D. Distributed Case Solution and Implementation

The Elephas library converted Keras code into Spark

with minimal instructions, allowing Spark's

distributed case to keep the network's core and

perform effective analysis [9]. The study used

MNIST and FMNIST data and only four simulations

per experiment. To provide variety, MNIST

experiments were run on five machines or nodes with

four cores each and four machines with five cores

each. Starting with the last enumeration in the

previous section, the experiments are listed as

follows:

1. Performance comparison of MNIST that spread

across five nodes with four cores per node and four

nodes with five cores per node using the Theano and

TensorFlow backends.

2. A performance comparison between the Theano

and TensorFlow backends for FMNIST utilizing the

distribution that produced the best results for MNIST.

3. The data from the undistributed case was utilized

to establish how many epochs were necessary, and

the number of epochs to be investigated was fixed.

II. Experiment and Analysis
The comparative results from each experiment were

shown, followed by a succinct interpretation of each:

A. Evaluation of MNIST Performance on Both the

Theano and TensorFlow Backends

The comparison figure of the times in this example is

shown below:

Fig. 1: Comparison of execution times for the case of

non-distributed MNIST

Fig. 2: Comparison of validation errors by epoch for the

case of non-distributed MNIST

Tikrit Journal of Pure Science Vol. 28 (1) 2023

92

It was observed that Theano is clearly superior to

TensorFlow in terms of timing. Now, it is time to

show graphically the evolution of the mean of the

error per period that they have had and its standard

deviation (represented by the character *) in the cases

of Theano and TensorFlow:

Fig.3: MNIST Theano, 50 and 200 epoch validation error mean and standard deviation

Fig. 4: MNIST TensorFlow, 50 and 200 epoch validation error mean and standard deviation

Finally, the two figures of this comparison were

broken down into periods. In this case, it was clear

that both Theano and TensorFlow have very similar

features and a similar evolution. Both of them

achieved a validation error below 1% from 10

epochs, a very optimal figure. In order to avoid

overloading the document with plots, only the 50-

epoch plots for Theano and TensorFlow were shown

for the following experiments.

B. Evaluation of FMNIST Performance on Both the

Theano and TensorFlow Backends

Now, the times obtained by training the FMNIST

database are shown as follows:

Fig. 6: Comparison of validation errors by epoch for the

case of non-distributed FMNIST

As was the case with MNIST, it was observed that

Theano is clearly superior in time. Now, it is time to

present the graphs (only those of 50 epochs) and the

comparative table in terms of validation errors:

Fig. 5: Comparison of execution times for the case

of non-distributed FMNIST

Tikrit Journal of Pure Science Vol. 28 (1) 2023

93

Fig. 7: The 50 epoch FMNIST Theano and TensorFlow validation error mean and standard deviation

Table 1: Comparison of the data obtained using distributed computing with the MNIST and FMNIST

databases

 Setting Backend
Total average time Average execution Average handling

Mean evaluation error

(minutes) time per core (minutes) time per task (ms)

MNIST

5 nodes with 4 TN* 50 41 80 0.74%

cores per node TF** 8.29 6.95 81.25 0.75%

4 nodes with TN* 57 40 87.75 0.70%

5 cores per node TF** 9.31 7.18 83.5 0.74%

FMNIST TN* 61.71 27.03 77.52 0.091

* Theano, ** TensorFlow

Fig. 8: Comparison of execution times for the case of

CIFAR10 not distributed

The faults were extremely identical between each

backend, just like in MNIST; however, they were

much more severe in this situation because the

network was not designed for this database.

As illustrated in figure 8, the behavior of the previous

cases was maintained in the scenario where CIFAR10

was not distributed. Figure 9 compares validation

errors by epoch. A deep learning model's

performance on the validation set was measured

using a metric called validation loss. The dataset's

validation set is a section set aside to check the

model's efficacy. Similar to the training loss, the

validation loss was determined by adding the errors

for each example in the validation set.

The similarity between the backends was maintained;

in this case, the network was much less optimized and

the errors were much higher in general.

Fig. 10: Mean and standard deviation of the validation error in 50 epochs, CIFAR10 Theano (left) and

CIFAR10 Tensor Flow (right)

Fig. 9: Comparison of validation errors by epoch

for the case of CIFAR10 not distributed

Tikrit Journal of Pure Science Vol. 28 (1) 2023

94

C. Evaluation of the Performance of the Theano and

TensorFlow Backends Using MNIST Distributed

Across Five Nodes with Four Cores Each and Four

Nodes with Five Cores Each

Starting experiments on GPUs was difficult, so they

were started on CPUs [8]. Theano CPU execution can

take up to an hour, so instead of ten simulations like

in the non-distributed case, four were run. Finally, 50

epochs were ideal for training from the non-

distributed case, so they were started immediately.

The Spark interface reported how many tasks were

executed, in which core and node, and how many

total tasks were involved. It also provided task

management, parallelization, and median execution

times across tasks and cores. To avoid filling the

document with images of all executions, images of

the Spark interface from a Theano backend and

TensorFlow backend execution was included, but the

data representing the averages of all executions was

compared. The data to compare were as follows:

• The length of time, on average, taken to complete

the execution since Spark launched the process.

• The median execution times averaged across all

tasks (since each task was executed in a core, it could

be said that this time was also the mean per core). It

was assumed that this data represented the average

execution time per core even though it actually

represented the average of medians.

• The management and distribution time allocated

to each task in Spark was referred to as "Garbage

collection time" or GC Time. The average of the

medians that the experiment yielded was also

calculated from this data, but it was used to determine

the average management time per task.

• Finally, each case's mean evaluation error was

calculated.

Theano's management time was low, but its execution

times were much longer than TensorFlow's (see Table

1) (one was in milliseconds and the other in the order

of minutes, respectively). Because they were similar

to each other and the non-distributed case, the

computational environment did not affect average

evaluation errors. The FMNIST experiment used

Spark with 5 nodes and 4 cores because it was

slightly faster across all measured times.

D. Comparison of Performance Using the

Distribution that Produced the Best Results for

MNIST and FMNIST Using the Theano and

TensorFlow Backends

This case was not taken into consideration because

the neural network was not optimized for FMNIST

and the probability of error data was not obtained

with the network. TensorFlow and Theano

simulations were run twice for each example to create

a comparison table with results averages like the

previous case. The previous experiment concluded

that this example used five nodes with four cores

each. Theano had much higher execution times than

TensorFlow, but the evaluation error was very

similar. Non-distributed case and system management

and parallelization were negligible compared to

execution times.

III. CONCLUSIONS AND FUTURE WORK
Theano was more efficient in convolutional neural

network training times than TensorFlow. Even

though the error was very similar in both cases,

despite the obvious loss of precision with the

FMNIST database and even more so with CIFAR10

versus MNIST. Thus, Theano is a better backend for

executions like those in this document. Since the

error is constant after 50 epochs, more training

epochs are not recommended. Since the distributed

case was run on CPUs instead of GPUs, this setup's

time savings cannot be compared. GPUs in both

environments reduced resource management and

parallelization time, which was much lower than

execution time. Given the significant time difference

between using Theano and TensorFlow as a backend,

it was concluded that Theano is not well optimized to

be launched in a distributed environment or over

CPUs. In some cases, the MNIST execution examples

had performed better with a configuration of five

machines with four cores each rather than four

machines with five cores each. Evaluation error had

remained constant for Theano and TensorFlow in

case of four-core machines. Evaluation errors were

similar in distributed and non-distributed executions.

This document demonstrated that Theano is not very

well optimized when using distributed computing

through Spark on several CPUs. It may be

worthwhile to conduct further research to determine

whether this is because resources are distributed

unevenly or because Theano is being run on CPUs

rather than GPUs.

References
[1] Jmour, N., Zayen S., & Abdelkrim, A. (2018)

Convolutional neural networks for image

classification. The 2018 International Conference on

Advanced Systems and Electric Technologies

(IC_ASET), pp. 397-402, Electronic ISBN:978-1-

5386-4449-2, DOI: 10.1109/ASET.2018.8379889

[2] Shatnawi, A., Al-Bdour, G., Al-Qurran, R. &

Al-Ayyoub, M. (2018). A comparative study of open

source deep learning frameworks. The 2018 9th

International Conference on Information and

Communication Systems (ICICS), pp. 72-77, doi:

10.1109/IACS.2018.8355444. Electronic ISBN:978-

1-5386-4366-2

[3] Yu, L., Li, B., & Jiao, B. (2019). Research and

implementation of CNN based on TensorFlow. IOP

Conference Series: Materials Science and

Engineering. 490. 042022. 10.1088/1757-

899X/490/4/042022.

[4] Elshawi, R., Wahab, A., Barnawi, A., & Sakr, S.

(2021). DLBench: A comprehensive

Tikrit Journal of Pure Science Vol. 28 (1) 2023

95

experimental evaluation of deep learning

frameworks. Cluster Computing, 24, 2017–2038.

https://doi.org/10.1007/s10586-021-03240-4

[5] Karaman, D., Gözüacik, N., Alagöz, M. O.,

İlhan, H., Çağal, U., & Yavuz, O. (2015).

Managing 6LoWPAN sensors with CoAP on

Internet. The 23nd Signal Processing and

Communications Applications Conference (SIU),

IEEE, Malatya, Turkey, 1389-1392, doi:

10.1109/SIU.2015.7130101.

[6] Yapıcı, M., Tekerek, A., & Topaloglu, N. (2019).

Performance comparison of convolutional neural

network models on GPU. IEEE 13th International

Conference on Application of Information and

Communication Technologies (AICT), Baku,

Azerbaijan, 1-4, doi:

10.1109/AICT47866.2019.8981749

[7] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A.

(2020). A survey of the recent architectures of

deep convolutional neural networks. Artificial

Intelligence Review,53, 5455–5516.

https://doi.org/10.1007/s10462-020-09825-6.

[8] Rahman, M. M., Islam, M. S., Sassi, R., &

Aktaruzzaman, M. (2019). Convolutional neural

networks performance comparison for

handwritten Bengali numerals recognition. SN

Applied Sciences,1, 1660,

https://doi.org/10.1007/s42452-019-1682-y

[9] Rahman, N. R., Hasan, M. A. M., & Shin, J.

(2020). Performance comparison of different

convolutional neural network architectures for

plant seedling classification. The 2nd

International Conference on Advanced

Information and Communication Technology

(ICAICT), Page 146-150.

[10] Prilianti, K. R., Brotosudarmo, T. H. P., Anam,

S., Suryanto, A. (2019). Performance comparison

of the convolutional neural network optimizer for

photosynthetic pigments prediction on plant

digital image. AIP Conference Proceedings,

2084(1), https://doi.org/10.1063/1.5094284

[11] Tan, Y., Li, Y., Liu, H., Lu, W., & Xiao, X.

(2020). Performance comparison of data

classification based on modern convolutional

neural network architectures. The 39th Chinese

Control Conference (CCC), Shenyang, China,

815-818, doi:

10.23919/CCC50068.2020.9189237.

[12] Gambo, F. L., Wajiga, G. M., Shuib, L., Garba,

E. J., Abdullahi, A. A., Bisandu, D. B. (2021).

Performance comparison of convolutional and

multiclass neural network for learning style

detection from facial images. EAI Endorsed

Transactions on Scalable Information Systems,

9(35), 1-13, doi: 10.4108/eai.20-10-2021.171549

[13] Ghafoorian, M., Karssemeijer, N., Heskes, T.,

van Uden, I. W. M., Sanchez, C. I., Litjens, G.,

...& Platel, B. (2017). Location sensitive deep

convolutional neural networks for segmentation

of white matter hyperintensities. Scientific

Reports, 7, 5110. https://doi.org/10.1038/s41598-

017-05300-5

 تحسين أداء هياكل الشبكات العصبونية الإلتفافية لحل مشكلات البيانات الضخمة
 الملخص

ثارر لكرربا ب لعيرربلإ ت يلتم ترر ثرر خررال سررتام أ ررم لات رر ب ل للإختبرر ب لاررم ثرر إسررتام أ ا نةرر ثة رر إسررتام أ ثر رر ثرر ث رر يعتبرر
MNIST وذلر ن ررم لبت ر ب .جيررم بح تر ا نةرMNIST هر ثلإوررلإح بحرط كررل قر للإ ررو لحر ل و رم ثسررم ب ر ترر ث تر . وثرر

 ب لعيرربلإ ت يلتم ترر إلررك ررم ابيرر ثرر لبت رر ب ليرر ي يختبرر يررط سرريتد ن ول رر ثرر ثجررت لتررم ني ونةررميد ترر اجتةرر نحترر لكرربا ذلرر
ن ررو ثة رر رري ثرر ثر رر ثارر لرركل ب زنررم ثرر لتم لارريت ةرر . ل ررك لارربي ا يرر ثرر الإ جررل خبرر ا لبت رر ب لعررا ثكرر رت ثرر هررك ل ررلإح.

ت ر ب ق هكه لم س ل مى جلإا ثا ق ثكال ثعي . نرد سرتام أ رم لا TensorFlowو Theano ش لتم ت لكبا ب لعيبلإ ت
MNIST قرر هرركه ن رر أ ل اتلإ رر باررل ليررم ثرر و ررم إلررك ناررع . وا رر اررلإ ولارر ل كرر وح ث لرر قرر لتعرر لررك ل حررما ل رركه ل كررال

ثة رر لارري ثا ا هرركه لكرربا ب قرر لايترر لبت رر ب لعررا ب سررتام أ سررتةمألرر ةررمأ قةررل ثة رر جت سررت ل ررك لارربي نحماررم لاررم ثرر ذلرر لم سرر
)ب سرتام أ CIFAR10و Fashion MNISTثو FMNIST. سريتد ثيعر ختبر رم لات ر ب Distributed Computing لحلإسب ل لإ ر

. سريتد إسرتام أ مرس لالإ ثتر ثر مرس ل تارت وارت MNISTث الإس ط ق ل ة ر إلرك ثر بعرم (مس ني تد لكبا ب لعيبلإ ت يلتم ت
(. TensorFlowثو Theano لت ررر كالإ ث ررراه)قررر و لتررر نارررتامأ لرررم د ل رررKerasإسرررتام أ ثاتبررر ذ ب ثارررتلإى ث لرررك ناررر ك هرررك بمعرررت

 CNN ل تررلإ م ثمتررلإم ل يررم تتلرر للتسلمرر لحارر لات لع لترر لتررم ني شرربا ب GPUقرر ثلرر ل نطبيرر ثلارربه ه رر ا نرر ا قرر لبحررلإ و لتطررلإن
هرركه ن ررو ثة ر نةيرتد سر ب ثا ا نلرر لتطبتةر ب. قرر هركه لم سر رر لعماررم ثر لم سر ب لرك ثل لإ ر ب لبت رر ب لسبير . وثر ذلرر نلإجرم

 رما ثر ل لرر ب ونحماررم لحر ب ل حت ررت قي ر لترع ي لرك ا ا ب يورر ق لرك ا سر ب ل تيير لتطبتةر ب بع ير بر ثل لإ رر و سرع ثر
 لت ي ا ث يحا قي نا ا.

https://doi.org/10.1007/s10586-021-03240-4

	I. Introduction
	A. Research Methodology, Proposed Solution and Implementation
	This section is divided into three parts. First, the common parts contained in the solution of all experiments carried out are analyzed. These parts are the neural network's architecture, the programming language used for its realization and the frame...
	1. Network architecture, programming language and framework.
	2. Solution and implementation of non-distributed case.
	3. Solutions and implementation of distributed case.
	B. Network Architecture, Programming Language And Framework
	1) Programming Language
	2) Network Architecture
	3) Framework

	C. Solution and Implementation of Non-Distributed Case
	D. Distributed Case Solution and Implementation

	II. Experiment and Analysis
	A. Evaluation of MNIST Performance on Both the Theano and TensorFlow Backends
	B. Evaluation of FMNIST Performance on Both the Theano and TensorFlow Backends
	C. Evaluation of the Performance of the Theano and TensorFlow Backends Using MNIST Distributed Across Five Nodes with Four Cores Each and Four Nodes with Five Cores Each
	D. Comparison of Performance Using the Distribution that Produced the Best Results for MNIST and FMNIST Using the Theano and TensorFlow Backends

	III. Conclusions and future work
	References

