TJPS

Tikrit Journal of Pure Science

ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online)

Journal Homepage: http://tjps.tu.edu.iq/index.php/j

Assessment of rock Slope Stability on Shaqlawa – qoysinjaq Road, North Eastern Iraq by using kinematic analysis

Salam Subhi Hameed¹, Amera Ismail Hussein², Ayyed Hussein Ward³ Applied Geology Department College of Science, Tikrit University, Tikrit, Iraq https://doi.org/10.25130/tjps.v28i1.1265

ARTICLE INF	0),
-------------	---	----

Article history:
-Received: 18 / 7 / 2022
-Accepted: 24 / 8 / 2022
-Available online: 20 / 2 / 2023
Keywords: Slope, failures, station
Corresponding Author:
Name: Salam Subhi Hameed
E-mail: <u>Salamhameed47@yahoo.com</u>
Tel:
©2022 COLLEGE OF SCIENCE, TIKRIT
UNIVERSITY. THIS IS AN OPEN ACCESS ARTICLE
UNDER THE CC BY LICENSE
http://creativecommons.org/licenses/by/4.0/

1- Introduction

 \mathbf{C}

The instability of rocky slopes is one of the most important problems and risks facing a geologist in his work, complementing the work of a civil engineer.Where these problems appear frequently in the form of landslides in the surrounding slopes or on which roads, railways and public facilities are based, as well as when building roads for the passage of vehicles and railways, or making the necessary designs for digging tunnels, mines, dams, and others. Earth's gravitational force effect it is the main factor in the sliding process on the rock masses or the soil forming the slope. and whenever it was rock mass strength the components of the slope are equal to or greater than the force of gravity on the ground this means that the rock mass is balanced and stable .But when the balance is imbalanced, this will lead to the instability of the rock masses and the failures of the slope which may lead to closing roads or destroying public facilities and endangering human life [1].

From previous studies on the topic of research a study[2] entitled (An engineering geological study of the stability of the rocky slopes along Qalchoalan - Al-Sarkalat – Konamasi Road, Sulaymaniyah, Kurdistan region, northeastern Iraq). It studied and classified the rocky slopes using SMRTool-v205 and

ABSTRACT

his study aims to assess the stability of the rock slopes on both sides of the road linking (Shaqlawa- qoysinjaq) to some of the exposed geological formations within the northeastern limb of the Safin anticline (Qamchuqa, Bakhma, Shiranish), where (6) stations were selected and a classification was made. An engineering description of the rock layers through a comprehensive survey of the study area, the results of the kinematic analysis by the kinematic analysis software (DIPS) showed that the possible percentage failures were represented by rock toppling (83.33%), planar sliding by (58.33%) and then wedge sliding by percentage (83.34%), By studying the factors affecting the stability of slopes in the region, it was found that the main factor causing the failures is the result of cutting the fold for the purpose of road construction, in addition to the structural and lithological factors.

DIPS-v6 programs .008 for slope stability and motion analysis.

2- Location of study area: The study area is Located (shaqlawa) distric which is NE of Iraq on road linking Shaqlawa – qoysinjaq where the failure took place on the rock slopes and causes several problems on the road. Six stations were selected in this study as shown in the figure (1).

Fig. 1; The site map of the studies area and 6 stations location.

Aims of study

1- Determining failures probability and their expected types, and determine the type of failure expected to occur.

2- Determining the percentage of potential failure.

3- Geology

The rocks that exposed in the study area are ranged in age from Hetrovian to Maastrichtian and represented by Qamchuqa, Bekhme and Shiranish formations (Fig. 2). According to[3] **,Qamchuqa Formation** (Hetrovian _ Albian) consist of thick layers of limestone and divided into two units, the lower unit by age (Parmian-Abtian), and the higher unit

(Albian). This formation appears in station(4,5,6),[3],[4]. **Bekhma Formation** (upper Campanian - lower Maastrichtian) Consists of Limestone and Dolomitic-Limestone,[5,6].

Shiranish Formation (Late Campanian - upper Maastrichtian) is divided into two parts, the bottom of which consists of limestone, which is sometimes marly or white to light gray Clayey, well bedded and with smooth surfaces. As for the upper part of the formation, it consists of shale and marl clay, blue and bluish-grey, and the shale clay gives the formation the papery appearance ,this formation appears in stations (1,2,3), [3].

Fig. 2: Geologic map of the studied area.

4- Methodology

This research consist of the field work to conduct a geological field visits the studied area to identify geological, structural, stratigraphic and geomorphological formations of the area. Also to identify the sites of existing or potential failures to nominate ideal sites for study stations, And engineering geological survey of the locations of the stations in which it occurred or there is a possibility of rock slides as in the following steps:

1- Determining the location of each station by a GPS device and recording the coordinates in (UTM) units

and the height of the station above sea level in meters. Table (1).

2- Measuring the width and height of the slope using a tape measure..

3- Determining the attitude of slope position and layers (slope value/slope direction). Table (1).

4- Carrying a detailed survey of the discontinuities, represented by the attitude (Dip angles & directions), their types, frequency, the distance between the discontinuities, their extension on the bedding plane and the aperture. Table (1).

5- Determining the occurrence and potential failures.

Tikrit Journal of Pure Science Vol. 28(1) 2023

TJPS

Station	Formations type	dip/dip direction	dip/dip direction	dip/dip	dip/dip direction	internal
no.		of slope	of beds	direction set 1	of set 2	friction angle ϕ
1	Shiranish	45/022	60 /040	79/182	85/300	31
2	formation	62/018	62/018	75/116	67/265	34
3		30/034	30/034	80/118	75/012	32
4	Qamchuqa	20/018	20/018	88/344	85/081	32
	Formation					
5	Qamchuqa	16/000	16/000	57/160	82/222	35
	Formation					
6	Qamchuqa	16/230	16/230	50/044	85/128	30
	Formation					

Table 1: Field data for the selected stations

Types of Failures in Rock Slopes

According to [1] the slope failures classified, Figure (3), including a classification, which classified the failures according to the nature and speed of movement, the shape of the surface of the failures, and the nature of the failures rock masses. And [7] classification, which classified the main types of collapse into:

- 1. Sliding (Planar, wedge, Rotational)
- 2. Toppling (Block, Flexural, Block -Flexural)
- 3. Rockfall
- 4. Rolling

Fig. 3: The main types of Failures [8] where (a) planar sliding, (b) wedge sliding(c) Toppling(d) rotational sliding

Results and discussion

The software (Dips) designed for the interactive analysis of orientation based on geological data. Dips allow the user to analyze and visualize structural data following the same techniques used in manual stereonets. In addition, it has many computational features, such as statistical contouring of orientation clustering, mean orientation and confidence calculation, cluster variability, and qualitative and quantitative feature attribute analysis.

To work on the kinetic analysis program (DIPS), whose interface consists of a worksheet similar to the worksheet in the EXCEL program figure(4), the data was entered represented by determining the attitude slope faces (dip/dip direction), followed by the attitude of the discontinuities (joints and bedding), and then from the contour preset instruction, figure(4) we get a plot representing the projection of the slope face and discontinuities, figure(5), then through the analysis instruction we choose the nematic analysis, and a window appears containing fields for the layer attitude and the angle of internal friction and the types of failures, figure(6) in each attempt we choose a type of failure, and the program gives us the percentage of the probability of its occurrence, figure (7).

Fig. 4: the kinetic analysis program (DIPS) interface.

Fig. 5: the projection of the slope face and discontinuities

Fig. 6: nematic analysis

TJPS

Color	Density Concentrations					
		0	.00	-	3.40	
		3	.40	-	6.80	
		6	.80	-	10.20	
		10	.20	-	13.60	
		13	.60	-	17.00	
		17	.00	-	20.40	
		20	.40	-	23.80	
		23	.80	-	27.20	
		27	.20	-	30.60	
		30	.60	-	34.00	
Maximum D	ensity	33.15	%			
Contour	r Data	Pole \	Vecto	ors		
Contour Distri	Contour Distribution					
Counting Circl	e Size	1.0%				
Kinematic Analy	ematic Analysis Planar Sliding					
Slope	Dip 6	0	-			
Slope Dip Direct	ion 4	0				
Friction An	ale 3	10				
Latoral Lin	ite 7	10				
Later ar Lin					7.1.1	
		Cri	tical	Iotai	9/0	
Plan	ng (All)		1	3	33.33%	
Plot	Pole Vectors					
	3 (3 Entries)					
Vector	Count	1 2 (2 6		-/		
Vector Hemis	phere	Lowe	r	-,		

• Station No. (1):

This station is located in the northeastern limb of the Safin anticline, to the right of the street within the Shiranish formation, within the following coordinates: (X=448561), (Y=4020405), and elevation above sea level (Elv=1060 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (60/040). with a height of (12 m) and width (60 m). There are three sets of discontinuities, the first group (set1) and its attitude (79/182) and the distance between the discontinuities (frequency = 3 per meter) and represents a release surface, while the second group (set2) and its attitude (85/300) and the distance between the discontinuities (frequency = 3 per meter) and represents a back sliding surface and the third group (set3) and its attitude in the same position with the bedding plane (ab), Concordant with it. The results of the kinematic analysis of station No. (1): (A) there is a possibility of a planar sliding (33.33%), figures (8),(9), (B) there is a possibility of a wedge sliding (66.67%), figures (10),(11) (C) there is possibility of a flexural toppling,(33.33%) figures (12),(13) (D) There is a possibility of a direct toppling (33.33%), figures(14),(15), where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are similar to some field data that represent the failure that actually occurred, such as planar sliding and wedge sliding.

The figures for the first station have been attached only, due to the large number of shapes, where each station has eight shapes

Fig. 8: The percentage of the Planar sliding in station 1

Fig. 9: Planar sliding in station 1

Symbol Feature							
Critical Intersection							
Color Donaite Concentrations							
Color	Color Density Concentrations						
			3	40	-	6.80	
			6	.80	-	10.20	
			10	.20	-	13.60	
			13	.60	-	17.00	
			17	.00	-	20.40	
			20	.40	-	23.80	
			23	.80	-	27.20	
			27	.20	-	30.60	
			30	.60	-	34.00	
Maximum	n Densi	ty	33.09	%			
Cont	our Da	ta	Pole Vectors				
Contour Dis	tributio	n	Fishe	r			
Counting C	ircle Siz	æ	1.0%				
Kinematic An	alvsis	w	edae S	lidina			
Slor	e Dip	45	-	_			
Slope Dip Dir	ection	22					
Friction	Angle 31°						
	-	_		Crit	tical	Total	%
	ae !	Slidina		2	3	66.67%	
P	Pole Vectors						
Vect	3 (3 Entries)						
Intersect	Grid Data Planes						
Intersectio	ns Cou	nt	3				
Hemisphere Lower							
P	Equal Angle						

Fig. 10: The percentage of the wedege sliding in station 1

Tikrit Journal of Pure Science Vol. 28(1) 2023

TJPS

Fig. 12: The percentage of the flexural toppling in station 1

Fig. 13: flexural toppling sliding in station 1

Symbol	Symbol Feature						
Critical Intersection							
Color	Color Density Concentrations						
			0	.00 -	3.40		
			3	.40 -	6.80		
			6	- 08.	10.20		
			10	.20 -	13.60		
			13	- 00.	17.00		
			17	- 00.	20.40		
			20	.40 -	23.80		
			23	- 08.	27.20		
			27	.20 -	30.60		
	uinun Des		30	.60 -	34.00		
Ple	aximum Den	ысу	33.03	70			
	Contour D	ata	Pole \	/ectors			
Conto	our Distribut	ion	Fisher				
Counting Circle Size 1.0							
Kinema	atic Analysis	Di	irect To	ppling			
	Slope Dip 45						
Slope [Dip Direction	ip Direction 22					
Fi	riction Angle	31	•				
L	ateral Limits	30)P				
				Critical	Total	9⁄0	
Direct Toppling (Interse			ection)	1	3	33.33%	
Oblique Toppling (Interse			ection)	0	3	0.00%	
Base Plan			ne (All)	1	3	33.33%	
Plot Mode			Pole Vectors				
Vector Count			3 (3 E	3 (3 Entries)			
Intersection Mode Gri			Grid (Grid Data Planes			
Intersections Count 3							
Hemisphere Lower							
Projection			Equal Angle				

Fig. 14: The percentage of the direct toppling in station 1

Fig. 15: direct toppling in station 1

• Station No. (2): This station is located in the northeastern limb of the Safin anticline, to the right of the street within the Shiranish formation, within the following coordinates: (X=449363), (Y=4019886), and elevation above sea level (Elv=1065 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (62/018), with a height of (9 m) and width (50 m). There are four sets of discontinuities, the first group (set1) and its attitude (75/116) and the distance between the discontinuities (frequency = 4 per meter) and represents a release surface, while the second group (set2) and its attitude (67/265) and the distance between the discontinuities (frequency = 4 per meter) and represents a back sliding surface and the third group (set3) and its attitude in the same position with the bedding plane (ab), Concordant with it, and the fourth group (set4) and its attitude (50/190) and the distance between the discontinuities (frequency = 4per meter). The results of the kinematic analysis of station No. (2): (A) there is a possibility of a planar sliding (25%), (B) there is a possibility of a wedge sliding (16.67%), (C) there is no possibility of a

flexural toppling, (D) There is a possibility of a direct toppling (50 %), where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are similar to some field data that represent the failure that actually occurred, such as planar sliding, wedge sliding and toppling.

• Station No. (3): This station is located in the northeastern limb of the Safin anticline, to the right of the street within the Shiranish formation, within the following coordinates: (X=450057), (Y=4018809), and elevation above sea level (Elv=1093 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (30/034), with a height of(15-18 m) and width (50 m). There are three sets of discontinuities, the first group (set1) and its attitude (80/118) and the distance between the discontinuities (frequency = 4 per meter) and represents a release surface, while the second group (set2) and its attitude (75/012) and the distance between the discontinuities (frequency = 4 per meter) and represents a back sliding surface and the third group (set3) and its attitude in the same position with the bedding plane (ab), Concordant with it. The results of the kinematic analysis of station No. (3: (A) there is no possibility of a planar sliding, (B) there is no possibility of a wedge sliding (C) there is no possibility of a flexural toppling (D) There is no possibility of a direct toppling ,where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are no similarity to field data that represent the failure that actually occurred.

• Station No. (4): This station is located in the southeast limb of the Safin anticline, to the right of the street within the Qamchuga formation, within the following coordinates: (X=449798), (Y=4018530), and elevation above sea level (Elv=1202 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (20/018), with a height of(10 m) and width (70 m). There are tow sets of discontinuities, the first group (set1) and its attitude (88/344) and the distance between the discontinuities (frequency = 4 per meter) and represents a release surface, while the second group (set2) and its attitude (85/081) and the distance between the discontinuities (frequency = 4 per meter) and represents a back sliding surface. The results of the kinematic analysis of station No. (4): (A) there is no possibility of a planar sliding, (B) there is no possibility of a wedge sliding (C) there is no possibility of a flexural toppling (D) There is no possibility of a direct toppling ,where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are no similarity to field data that represent the failure that actually occurred.

• Station No. (5):

This station is located in the Southwest limb of the Safin anticline, to the left of the street within the Qamchuqa formation, within the following coordinates: (X=448975), (Y=4018240), and elevation above sea level (Elv=1375 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (16/000), with a height of (8 m) and width (60 m). There are three sets of discontinuities, the first group (set1) and its attitude (57/160) and the distance between the discontinuities (frequency = 3 per meter) and represents a release surface, while the second group (set2) and its attitude (82/222) and the distance between the discontinuities (frequency = 3 per meter) and represents a back sliding surface and the third group (set3) and its attitude in the same position with the bedding plane (ab), Concordant with it, The results of the kinematic analysis of station No. (5): (A) there is no possibility of a planar sliding, (B) there is no possibility of a wedge sliding (C) there is no possibility of a flexural toppling (D) There is no possibility of a direct toppling ,where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are no similarity to field data that represent the failure that actually occurred.

• Station No. (6):

This station is located approximately in the fold axis of the Safin anticline, to the left of the street within the Qamchuqa formation, within the following (X=448803), coordinates: (Y=4018261), and elevation above sea level (Elv=1425 m) in UTM units, which were determined by the (GPS). The station consists of a slope whose attitude is (16/230), with a height of (8-12 m) and width (60 m). There are tow sets of discontinuities, the first group (set1) and its attitude (50/044) and the distance between the discontinuities (frequency = 2 per 1.5meter) and represents a release surface, while the second group (set2) and its attitude (85/128) and the distance between the discontinuities (frequency = 3per meter) and represents a back sliding surface. The results of the kinematic analysis of station No. (4): (A) there is no possibility of a planar sliding, (B) there is no possibility of a wedge sliding (C) there is no possibility of a flexural toppling (D) There is no possibility of a direct toppling ,where (SF) the face of the slope, (SO) the bedding plane (J1, J2), the sums of the discontinuities.

The potential failures resulting from the program are no similarity to field data that represent the failure that actually occurred.

Conclusion

The results of the kinematic analysis by DIPS program showed that only Station No. 1 and Station No. 2 have the possibility of failure, and this is due to the operations of cutting rocks from the bottom of the slopes to constructed roads, construct buildings and cultivate lands. And stations 4,5 and 6 have no possibility of failure due to the low slope (less than 20°), as for station No. 3, there is no possibility of

References

 Ali, Miqdad Hussein and Hijab, Bassem Rushdi and Jassar, Sinan Hashem, 1991: Engineering Geology, Dar Al-Kutub for Printing and Publishing, University of Mosul, University of Baghdad, 576 p.
Kadir, Nzho Mohammed, 2020: Engineering Geological Study of Rock Slope Stability Along

Qalachwalan - Suraqalat - Kunamassy Road, Sulaimani, Kurdistan Region, NE-Iraq, University of Sulaimaniyai.

[3] Jassim, S. Z. and Goff, J. C., 2006: Geology of Iraq (First edition). Published by Dolin, Prague and Moravian Museum, Brno, Czech Republic, 341p.

[4] Buday, T., 1980: The regional geology of Iraq. Stratigraphy and Paleogeography. Dar Al-kutib

failure because the bedding plan is concordant with the rock slope.

Publishing house, University of Mosul, Mosul, Iraq, 445p

[5] Youkhana. R.Y and Sissakian ,V , K., 1986 . Stratigraphy of Shaqlawa - Quwaisanjag Area . Jour. Geol. Soc. Iraq, vol.19. P 138 -154 .

[6] Al–Qaim, B.and Salman, L., 1986.Lithofacies analysis of Kolosh Formation Shaqlawa area North Iraq. Jour. Geol. Soc. Iraq. Vol.19. P 107 – 121.

[7] Hoek, E. & Bray, J.W., 1981: Rock Slope Engineering, 3rd. ed., Institution of Mining and Metallurgy, London, 358P.

[8] Wyllie, D. C. and Mah, C. W., 2004: Rock Slope Engineering – Civil and Mining (4th edition). Taylor & Francis e-Library, 520p.

تقييم استقرارية المنحدرات الصخرية على طريق شقلاوة – كويسنجق، شمال شرقي العراق باستخدام التقييم استقرارية المنحدرات التحليل الحركي

سلام صبحي حميد ، أميرة أسماعيل حسين ، عايد حسين ورد قسم علوم الأرض التطبيقية ، كلية العلوم ، جامعة تكربت ، تكربت ، العراق

الملخص

الغرض من الدراسة الحالية تقييم أستقرارية المنحدرات الصخرية على جانبي الطريق الرابط بين (شقلاوة_ كويسنجق) لبعض التكوينات الجيولوجية (قمجوقة،بخمة،شيرانش) المنكشفة ضمن الجناح الشمالي الشرقي aZS لطية سفين المحدبة حيث تم أختيار (6) محطات تم أجراء تصنيف و وصف هندسي للطبقات الصخرية من خلال المسح الشامل لمنطقة الدراسة ،أظهرت نتائج التحليل الحركي بواسطة برنامج (DIPS) إن الأنهيارات المحتملة تمثلت بالانقلاب الصخري بنسبة (83.33%)، الأنزلاق المستوي بنسبة (83.33%) وبعدها الانزلاق الاسفيني بنسبة (83.34%)، من خلال دراسة الع-وامل المؤثرة على أستقرارية المنحدرات في المنطقة تبين أن العامل الرئيسي المسبب لحدوث الانهيارات هو نتيجة قطع الطية لغرض شق الطريق أضافة إلى العوامل التركيبية والصخارية.