On strongly faintly M-*θ***-i-continuous functions in Bi-Supra Topological Space**

Taha H. Jasim¹ , Reem O. Rasheed²

¹Department of Mathematics, college of computer science and Mathematics, University of Tikrit , Tikrit , Iraq ²Department of Mathematics , college of Education for pure sciences , University of Tikrit , Tikrit , Iraq

Abstract.

In this paper we introduces a new definition , called i- open and via this definition we introduce class of topological concepts(*µ*-*θ*-i-open set, *µ*-*θ*-i-closed, strong faintly *µ*-*θ*-continuity, strong *µ*-*θ*-continuity)and we generalized these concepts in bi -supra topological space .At last many important theorems in strongly faintly M-*θ*-i-continuous functions are investigated. And study the relationships among these functions and other forms are discussed.

Key Words and Phrases: bi-supra topological space , strongly μ - θ - i-continuity, strongly faintly μ - i continuity.

1. Introduction

Nasef and Noiri [1] introduce three classes of strong forms of faintly continuity namely: strongly faint semicontinuity, strongly faint precontinuity and strongly faint β-continuity. Recently Nasef [2] defined strong forms of faint continuity under the terminologies strongly faint α-continuity and strongly faint γ-continuity. In this paper using *µ*-*θ*- i -open sets, strongly faintly μ - θ - i -continuity is introduced and studied in bi-supra topological spaces (Let X be non-empty set, let \mathcal{S} o(X) be the set of all semi open subset of X non-empty set, let $\mathcal{S}o(X)$ be the set of all semi open subset of X (for short ST) and let \mathcal{P} ^o(X) be the set of all pre open subset of X(for short \mathcal{PT}), then we say that $(X, \mathcal{ST}, \mathcal{PT})$ is a bi-supra topological space, when each of (X,\mathcal{ST}) and (X,\mathcal{PT}) is a supra topological space)[3] Moreover, basic properties and preservation theorems of strongly faintly μ - θ - i - continuous functions are investigated and relationships between strongly faintly μ - θ - i continuous functions and graphs are investigated.

2. Preliminaries.

Throughout this paper (X, \mathcal{T}_X) and (Y, \mathcal{T}_y) (Simply, X and Y) represent topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure of subset A of X, the interior of A and the complement of A is denoted by $cl(A)$, int(A) and A^c or X\A respectively [3] A subset A of a space X is said to be regular open if it is the interior of its closure, i.e, $A = \text{int}(cl(A))$. The complement of a regular- open set is referred to as a regular –closed set. A union of regular-open sets is called δ -open [4] The complement of a δ-open set is referred to as a δclosed set. A subset A of a space(X, \mathcal{T}_x) is called θ open set [5] if there exists an open set U containing x such that $U ⊆ cl(U) ⊆ A$. The set of all θ -interior points of A is said to be the θ-interior set and denoted by θ-int (A). A subset A of X is called θ-open if $A =$ θ- int (A) The family of all θ- open sets in bi-supra topological space $(X, , \mathcal{T}_X)$ forms a supra topology \mathcal{T}_x on X. A subset A of a space (X, \mathcal{T}_x) is called semi-open [6] (resp, α-open [7], pre-open [8] β-open [9], γ - open [10]) if A⊆cl(int(A)(resp, A ⊆ int(cl(int(A)) A ⊆ int(cl(A)) A ⊆cl(int(cl(A)), $cl(int(A)))$. The complement of semi-open (resp. α - open , pre-open ,β-open , γ-open) set is called semiclosed (resp. α -closed, pre- closed, β - closed, γ closed [11]).

A of a space (X, \mathcal{T}_X) is called semi- θ -open (resp. α θ -open [12], pre- θ -open ,β- θ -open ,γ- θ – open[12])if and only if for each $x \in A$ there exists G∈ semi-open (resp, α-open, pre-open, β-open, γ-open) such that semi-CL(G) \subseteq A (resp. α-CL(G) ⊆A, pre- CL(G) ⊆A, β-CL(G) ⊆A, γ- CL(G) ⊆A).

The union of all θ-open (resp,semi- θ-open, δ-open,) sets contained in A is called the θ -interior (resp,semi- θ-interior [2], δ-interior) of A and it is denoted by θ - int(A) (resp, semi- θ -int(A), δ -int (A)). The intersection of all θ-closed (resp.,semi- θ- closed, δ- closed,) sets containing A is called the θ- closure (resp.,semi- θ- closure, δ- closure [13]) of A and it is denoted by $θ$ - cl(A) (resp, semi- $θ$ -cl(A), $δ$ -cl(A)). We recall the following definitions and results, which are useful in the sequel

Definition 2.1[14]: Let (X, \mathcal{T}_X) be a topological space. Then a subset A of X is said to be: (i) an M-open set, if $A \subseteq \text{cl}(int_{\theta}(A))$ [int($cl_{\delta}(A)$),

(ii) an M-closed set if int($cl_{\theta}(A)$) \ cl($int_{\delta}(A)$) \subseteq A.

Definition 2.2[14]: Let (X, \mathcal{T}_X) be a topological space and $A \subseteq X$. Then:

(i) the M-interior of A is the union of all M-open sets contained in A and is denoted by M-int(A), (ii) the M-closure of A is the intersection of all Mclosed sets containing A and is denoted by M-cl(A)

Definition 2.3[15]: A function $f : (X, \mathcal{T}_X) \rightarrow$ (Y, T_y) is said to be:

(i) M-continuous [14] if $f^{-1}(U) \in M$ -open in X, for each U $\in \mathcal{T}_{\rm v}$

(ii) pre-M-open [16] if, $f(U) \in M$ -open in Y, for each $U \in M$ - open in X.

(iii) pre-M-closed [11] if, $f(U) \in M$ -closed in Y, for each U∈ M- closed in X.

Definition 2.4: A function $f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_y)$ is said to be strongly faintly continuous [17] (resp. strongly faintly semicontinuous, strongly faintly pre continuous [18], strongly faintly βcontinuous [18], strongly faintly α -continuous [1], strongly faintly γ - continuous[2]) i f for each $x \in X$ and each open (resp.semi- open, pre -open, β-open, α-open, γ-open) set V of Y containing f(x), there exists a θ -open set U of X containing x such that $f(U)$ ⊆ V.

3 . A new type of bi-supra topological *space*

Definitions 3.1: Let $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ be a bi-supra topological space, and let G be a subset of X. Then G is said to be i- open set if $G=(AUB)$ U \emptyset where A∈ ST and B∈ PT . The Complement of i- open set is called i- closed set.

Definitions 3.2: A subset A of a space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is called θ -i-open set if there exists an i-open set U containing x such that $U \subseteq i$ - cl(U) $\subseteq A$.

Definitions 3.3: The set of all θ-i-interior points of A is said to be the θ-i-interior set and denoted by θ-i-int (A). A subset A of X is called θ -i-open if A = θ -i- int (A).

Definitions 3.4: A of a space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is called semi- θ-i-open (resp. α- θ -i-open , pre- θ -i-open , βθ -i-open , γ- θ -i-open)if and only if for each x ∈ A there exists G in semi-i-open (resp., α -i-open, pre-iopen ,β-i-open , γ-i-open) such that semi-i-CL(G) ⊆A (resp. α-i CL(G) ⊆A -, pre-i- CL(G) ⊆A , β-i CL(G) \subseteq A, γ -i- CL(G) \subseteq A).

Definitions 3.5: A subset A of a space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is called M-i-open if $A \subseteq i$ - cl(θ -i int(A)) ∪ i- int(δ –i-cl(A)). The complement of semii-open (resp., α-i-open, pre-i-open, β-i-open, γ-iopen ,semi- θ-i-open, θ-i-open, M-i-open) set is called semi-i-closed (resp., α-i-closed, pre-i- closed, $β$ -iclosed , γ-i- closed ,semi- θ-i- closed, θ-i- closed, Mi- closed) . The union of all M-i-open (resp. θ-iopen,semi- θ-i-open, δ-i-open,) sets contained in A is called the M-i-interior (resp. θ-i-interior ,semi- θ- iinterior, δ -i-interior) of A and it is denoted by M-iint(A) (resp. . θ-i- int(A), semi. θ-i-int(A), δ-i-int (A)). The intersection of all M-i-closed (resp. . θ-iclosed ,semi- θ-i- closed, δ-i- closed,) sets containing A is called the M-i-closure (resp. θ-i- closure ,semiθ-i- closure, δ-i- closure) of A and it is denoted by M-i-cl(A) (resp. θ-i- cl(A), semi. θ-i-cl(A), δ-i $cl(A)$).

Definition 3.6: A subset A of a space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is called M- θ -i- open if and only if for each $x \in A$ there exists G in M-i-open in X such that $M-i-cl(G)$ ⊆A.

Also , clearly every M-θ-i- open (resp. M-θ-i- closed) set is M-i- open (rsp. M-i- closed) set. And every θi- open (resp. θ-i- closed) set is M-i- open (rsp. M-iclosed).

Example 3.1. Let $X = \{a, b, c\}$ and $\mathcal{T}_x = \{ \emptyset, \{a\},\}$ ${a, c}, {b, c}, X}$

{ \emptyset , {b, c}, {b}, {a}, X}, $S\mathcal{T}_x = \{ \emptyset$, {a}, {a, c}, {b, c }, X } = T_x^c

 $\mathcal{PT}_{x} = \{ \emptyset, \{a\}, \{c\}, \{a, b\} \{a, c\}, \{b, c\}, X \}$

i-open in $X = \{ \emptyset, \{a\}, \{c\}, \{a, b\} \{a, c\}, \{b, c\}, X\},$ iclosed in $X = \{ \emptyset, \{b, c\} \{a, b\}, \{c\}, \{b\}, \{a\}, X\}$

 $= \{ \emptyset, \{a, b\}, \{b, c\}, X \}$ in X θ -i- open

 $= \{ \emptyset, \{c\}, \{a\}, X \}$ in X θ -i-closed

Regular –i-open in X= { Ø, {a}, {c}, {a, b}, {b, c}, X}

 δ -i-open in X= { Ø, {a}, {c}, {a, b} {a, c}, {b, c}, X}

 δ -i-closed in X= { Ø,{b, c} {a, b},{b},{c},{a}, X}

M-i-open in X= { \emptyset , {a}, {c}, {a, b}, {a,c}, {b, c}, X} M-i-closed in $X = \{ \emptyset, \{b, c\} \{a, b\}, \{c\}, \{b\}, \{a\}, X \}$ M-θ-i- open in X= { \emptyset , {a, b} {b, c}, X}

Then {a},{c} are M-i-open set but not M-θ-i- open set in X .

Definition 3.7:The M-θ-i-closure of a subset A in bisupra topological space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is denoted by $M-\theta$ -i-cl(A) and is defined to be the set of all points x of X such that for each G in M-θ-i- open in X, M-θ-i $cl(G) \cap A \neq \emptyset$.

Definition 3.8: A subset A in bi-supra topological space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ is said to be M- θ -i-closed if M- θ -i-cl(A) = A. The complement of a M- θ -i-closed set is called a M-θ-i -open set*.*

We recall the following definitions and results, which are useful in the sequel.

Definition 3.9: A function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \, S\mathcal{T}_y, \, \mathcal{P}\mathcal{T}_y)$ is said to be strongly faintly $-\theta$ – i-continuous (resp. . strongly faintly semi- $\theta - i -$ continuous, strongly faintly pre θ -icontinuous, strongly faintly β- θ-i--continuous , strongly faintly α - θ-i-continuous, strongly faintly γθ-i-continuous) i f for each x ∈ X and each θ-i-open (resp.semi θ-i-open, pre θ-i-open, β- θ-i-open, α- θ-iopen, γ- θ-i-open) set V of Y containing $f(x)$, there exists a θ -i-open set U of X containing x such that $f(U) \subseteq V$.

Definition 3.10: A function $f : (X, \mathcal{T}_X) \to (Y, \mathcal{T}_y)$ (resp, $f: (X, \mathcal{ST}_X, \mathcal{PT}_X) \to (Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is said to be: (i) θ -continuous [19](resp. θ -i –continuous), if f^{-1} (V) is θ-open (resp. θ-i-open) in X for every open (resp. i- open)set V of Y.

(ii) quasi θ -continuous [20](resp. quasi θ -icontinuous), if $f^{-1}(V)$ is θ -open(resp. θ -i-open)set in X for every θ-open (resp. θ-i-open)set V of Y.

(iii)faintly continuous [15](resp. faintly i-continuous) if $f^{-1}(V)$ is open(resp. i-open)set in X for every θ open (resp. θ-i-open) set V of Y.

Definition 3.11: A function f : $(X, \mathcal{T}_X) \rightarrow$ (Y, \mathcal{T}_y) (resp, f: $(X, \mathcal{ST}_x, \mathcal{PT}_x) \rightarrow (Y, \mathcal{ST}_y, \mathcal{PT}_y)$) is said to be:

(i) M-continuous [14] (resp, M-i-continuous) if f^{-1} (U) \in M-open(resp, M-i-open) set in X, for each U∈ Y

(ii) pre-M-open $[16]$ (resp, pre-M- θ -i –open) if, f(U) ∈ M-open (resp, M- θ-i-open) set in Y , for each U∈ M-open(resp, M- θ -i-open) set in X.

(iii) pre-M-closed [16] (resp, pre-M- θ -i –closed) if, f(U) \in M -closed (resp, pre-M- θ -i -closed) set in Y. for each U \in M- closed(resp, pre-M- θ -i –closed)set in X.

Lemma 3.1: For topological space (X, \mathcal{T}_X) (resp, bisupra topological space $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ and $A \subseteq X$, then the following statements are hold:

(i) If $A \subseteq Fi$, Fi is an M-closed [15](resp, M-i-closed)set of X, then $A \subseteq M-cl(A) \subseteq Fi$, (resp.M -i-cl(A) ⊆ Fi).

(ii) If $Gi \subseteq A$, Gi is an M-open[14] (resp. M-i-open) set of X, then Gi ⊆ M-int(A) ⊆ A(resp. Gi ⊆ M-i $int(A) \subseteq A$.

Proposition 3.1: Let (X, \mathcal{T}_X) topological space (resp. $(X, \mathcal{ST}_X, \mathcal{PT}_X)$ be bi-supra topological space) and $A \subseteq X$. Then . the following statements are hold: (i) θ - F_r (A) = θ -cl (A) \ θ -int (A))[9] (resp. θ -i- F_r (A)

 $= \theta$ -i cl (A) \setminus (θ -i int (A)) (ii) M- F_r (A) = M-cl(A) \ M-int(A) [13] (resp.M-i- F_r

 $(A) = M-i-cl(A) \setminus (M-i-int(A))$

(iii) M- $b(A) = A\ M\text{-}int(A)$ [11] (resp. M-i- $b(A) =$ $A\backslash M$ -i-int (A)).

The set of θ-boundary (resp. θ-i-boundary ,M-iboundary, M-i-border) of A is denoted by θ - F_r (A) (resp. θ -i- F_r (A),M-i- F_r (A), M-i- b(A)).

4. strongly faintly M-θ-i –continuous functions.

Definition 4.1: A function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is said to be strongly faintly M- θ -i continuous if for each $x \in X$ and each M- θ -i -open set V of Y containing $f(x)$, there exists a θ -i-open set U of X containing x such that $f(U) \subseteq V$

Remark 4.1 : The implication between some types of definitions (**3.9**) and (**4.1**) are given by the following diagram.

Faintly-i-continuous \leftarrow s faintly M- θ -i-continuous

s.faintlyα - θ-i-continuous $\bar{\mathcal{L}}$ s.faintly s.faintly pre - θ-i-continuous semi θ-i-continuous

> s.faintly γ- θ-i-continuous \uparrow s.faintly β - θ -i-continuous

The proof of implication form definition directly .However, none of these implications is reversible as shown by the following examples and well- known facts.

Example 4.1 : Let $X = Y = \{a, b, c\}$ and $\mathcal{T}_x = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X \}$ $\{\emptyset, \{\mathbf{b}, \mathbf{c}\}, \{\mathbf{a}, \mathbf{c}\}, \{\mathbf{c}\}, \{\mathbf{b}\}, \mathbf{X}\} = \mathcal{T}_{\mathbf{x}}^{\mathbf{c}}$ $ST_x = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X \}$, $\mathcal{PT}_x = \{ \emptyset,$ {b}, {a, b} {a, c}, X} i-open in $X = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \{a, c\}, X \}$ i-closed in $X = \{ \emptyset, \{b, c\} \{a, c\}, \{c\}, \{b\}, X\}, \theta$ -iopen in X={ \emptyset , {a, c}, X} with $\mathcal{T}_Y = \{ \emptyset, \{a, c\}, Y \}$ $\{\emptyset, \{\mathsf{b}\},\ \mathsf{Y}\} = \mathcal{T}_Y^{\mathsf{c}}$ $ST_Y = \{ \emptyset, \{a, c\}, Y \}$, $\mathcal{PT}_Y = \{ \emptyset, \{b\}, \{a, b\} \{b, c\},$ Y} i-open in Y = { Ø,{b}, {a, b} {a, c}, {b,c}, Y}, iclosed in $Y = \{ \emptyset, \{a, c\}, \{c\}, \{b\}, \{a\}, Y\}$ semi-i-open in Y={ \emptyset , {b}, {a, b} {a, c}, {b, c}, Y} semi-i-closed in Y = { Ø , {a, c} { c}, {b}, {a}, Y}, semi- θ -i- open in Y={ \emptyset , {a, c}, Y} γ-i-open in Y={ \emptyset , {a}, {b}, {a,b} {a, c}, {b,c} Y} γ-i-closed in Y={ \emptyset , {b,c}, {a,c}, {c} {b}, {a} Y}

define the function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \to (Y, \mathcal{ST}_y, \mathcal{PT}_y)$ by the identity function . then f is strongly faintly semi- θ-i-continuous but not strongly faintly γ - θ-icontinuous.

Example 4.2: Let R be the set of real numbers T_x the indiscrete topology for R and T_Y the discrete topology for R.

Then the identity function $f : (X, \mathcal{T}_X) \to (X, \mathcal{T}_Y)$ (resp, $f: (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is strongly faintly pre-continuous but not strongly faintly γ -continuous [9] (resp, strongly faintly pre- θ-i-continuous but not strongly faintly γ - θ-i-continuous).

Example 4.3: Let Tx be the uasul topology for R and $T_Y = \{ R, \emptyset, [0,1] \cup (1,2) \cap Q \}$ where Q denotes the set of the set of rational numbers. Then the identity function .

 $f : (X, \mathcal{T}_X) \to (X, \mathcal{T}_y)$ (resp, $f : (R, \mathcal{S}\mathcal{T}_x, \mathcal{P}\mathcal{T}_x) \to$ $(R, \mathcal{ST}_y, \mathcal{PT}_y)$ is strongly faintly γ - continuous but not strongly faintly β –continuous[20] (resp, strongly faintly γ - θ-i-continuous but not strongly faintly β θ-i-continuous.

Example 4.4: (1):in ([1], example 3.2) showed a strongly faintly semi-continuity (resp,strongly faintly semi- θ-i-continuity) which is not a strongly faintly pre-continuity. (resp,strongly faintly pre- θ-icontinuity).

(2): using example 3.2 of [8] , this easily observed that a strongly faintly α -continuity(resp, faintly α θ-i-continuity) but not strongly faintly M –continuity (resp, not strongly faintly $M - \theta$ -i-continuity).

Theorem 4.1: For a function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ (Y, S_{y}, PT_{y}) the following statements are equivalent:

(i) f is strongly faintly $M - \theta$ -i-continuous.

(ii) f: $(X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow (Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is faintly-icontinuous.

(iii) $f^{-1}(V)$ is θ -i-open in X for every M - θ -i-open set V of Y (iv) $f^{-1}(F)$ is θ -i-closed in X for every M - θ-i -closed subset F of Y.

Proof. (i)⇒(iii): Let V be an M - θ -i -open set of Y and $x \in f^{-1}(V)$. Since $f(x) \in V$ and f is strongly faint M - θ-i -continuous, there exists a θ-i-open set U of X containing x such that $f(U) \subset V$. It follows that $x \in U$ $\subset f^{-1}(V)$.

Hence $f^{-1}(V)$ is θ -i-open in X.

(iii)⇒(i): Let $x \in X$ and V be an M - θ -i -open set of Y containing f(x). By (iii), $f^{-1}(V)$ is a θ -i-open set containing x. Take $U = f^{-1}(V)$. Then $f(U) \subseteq V$.

This shows that f is strongly faint $M - \theta - i$ -continuous. $(iii) \Rightarrow (iv)$: Let V be any M - θ -i -closed set of Y. Since $Y \setminus V$ is an M - θ -i -open set, by (iii), it follows that $f^{-1}(Y|V) = X\backslash f^{-1}(V)$ is θ -i-open. This shows that $f^{-1}(V)$ is θ -i-closed in X.

(iv)⇒(iii): Let V be an M - θ -i -open set of Y. Then Y\V is M - θ-i -closed in Y. By(iv), $f^{-1}(Y\Y) =$ $X \setminus f^{-1}$ (V) is θ -i-closed and thus f^{-1} (V) is θ -iopen.(i)⇔(ii): Clear.

Now we intuduce a very important theorem to explam the equivalence implication.

Theorem 4.2: For a function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \, S\mathcal{T}_y, \, \mathcal{P}\mathcal{T}_y)$, the following statements are equivalent:

(i) f is strongly faintly M- θ -i -continuous,

(ii) For each $x \in X$ and each M- θ -i -open V of $f(x)$ in Y, there exists an θ -i -open set U of x in X such that f $(U) \subseteq V$,

(iii) f^{-1} (F) is θ -i -closed in X, for every M- θ -iclosed set F of Y,

(iv) θ -i -cl(f^{-1} (B)) $\subseteq f^{-1}$ (M- θ -i cl (B)), for each B ⊆ Y,

(v) $f(\theta - i - cI(A)) \subseteq M - \theta - i$ cl $(f(A))$, for each $A \subseteq X$,

(vi) f^{-1} (M- θ -i- int(B)) \subseteq θ -i-int(f^{-1} (B)), for each $B \subseteq Y$,

(vii) θ -i –b $(f^{-1}(B)) \subseteq f^{-1}(M - \theta - i - b(B))$, for each $B \subseteq Y$,

(viii) θ -i -Fr(f^{-1} (B)) $\subseteq f^{-1}$ (M- θ -i -Fr(B)), for each $B \subseteq Y$.

Proof. (i)→(ii). Let $x \in X$ and $V \subseteq Y$ be A M- θ -iopen set containing $f(x)$. Then $x \in f^{-1}(V)$. Hence by hypothesis, $f^{-1}(V)$ is θ -i-open set of X containing x. We put $U = f^{-1}(V)$.

Then $x \in U$ and $f(U) \subseteq V$.

(ii)→(iii). Let F \subseteq Y be M-θ-i-closed. Then Y\F is M-θ-i-open and $x \in f^{-1}$ (Y\F). Then $f(x) \in Y\backslash F$. Hence by hypothesis, there exists an θ -i-open set U containing x such that $f(U) \subseteq Y \ F$, this implies that, $x \in U \subseteq f^{-1}(Y \setminus F)$. Therefore, $f^{-1}(Y \setminus F) = X \setminus f^{-1}$ (F) which is θ -i-open in X. Therefore, f^{-1} (F) is θ -i closed.

(iii)→(i). Let $V \subseteq Y$ be a M-θ-i-open set. Then Y\V is M- θ -i-closed in Y. By hypothesis, $f^{-1}(Y|V) =$ $X \setminus f^{-1}(V)$ is θ -i -closed and hence $f^{-1}(V)$ is θ -iopen. Therefore, f is strongly faintly M- θ-i continuous.

 $(i) \rightarrow (iv)$. Since B ⊆ M- θ -i cl(B) ⊆ Y which is a Mθ-i-closed set. Then by hypothesis, f^{-1} (clθ(B)) is θ-i -closed in X. Hence by Lemma 2.1, θ -i-cl($f^{-1}(B)$) \subseteq f -1(M- θ -i cl(B)) for each B \subseteq Y.

(iv) \rightarrow (v). Let A \subseteq X. Then f(A) \subseteq Y, hence by hypothesis, θ -i -cl(A) \subseteq θ -i -cl(f^{-1} (f(A))) \subseteq f^{-1} (M- θ -i cl(f(A))). Therefore, f(θ -i -cl(A)) \subseteq f f^{-1} (Mθ-i -cl(f(A))) ⊆M- θ-i- cl(f(A)), (v) →(i). Let V ⊆ Y be a M- θ -i-closed set. Then, $f^{-1}(V) \subseteq X$. Hence, by hypothesis, $f(\theta - i - cI(f^{-1}V))) \subseteq M - \theta - i - cI(f(f^{-1}(V)))$ \subseteq M- θ -i -cl(V) = V. Thus θ -i -cl($f^{-1}(V)$) $\subseteq f^{-1}(V)$ and hence $f^{-1}(V) \in \theta$ -i -closed in X .Hence, f is strongly faintly M- θ-i -continuous,

(i) \rightarrow (vi). SinceM -θ-i - int(B) \subseteq B \subseteq Y is M- θ-iopen. Then by hypothesis, f^{-1} (M- θ -i -int(B)) is an θ-i -open set in X. Hence, by Lemma 2.1, f^{-1} (M-θ-i $-int(B)) \subseteq \theta$ -i -int($f^{-1}(B)$), for each $B \subseteq Y$.

 $(vi) \rightarrow (i)$. Let $V \subseteq Y$ be a M- θ -i-open set. Then by assumption, $f^{-1}(V) = f^{-1}(M - \theta - i \text{ int}(V)) \subseteq \theta - i$ $int(f^{-1}(V))$. Hence, $f^{-1}(V)$ is θ -i -open in X. Therefore, f is strongly faintly M- θ-i continuous.-

 $(vi) \rightarrow (vii)$. Let $V \subseteq Y$. Then by hypothesis, f^{-1} (M- θ -i -int(V)) \subseteq θ -i -int($f^{-1}(V)$) and so $f^{-1}(V)$ θ-i -int(f⁻¹ (V)) ⊆ f⁻¹ (V) \f⁻¹ (M- θ-i -int(V)) = f^{-1} (V\M- θ -i - int(V)). By Proposition (3.1), θ -i $b(f^{-1}(V)) \subseteq f^{-1}(M - \theta - i - b(V)).$

 $(vii) \rightarrow (vi)$. Let $V \subseteq Y$. Then by hypothesis, $f^{-1}(V)$ ∞ θ -i -int(f (V)) $\subseteq f^{-1}$ (V) $\uparrow f^{-1}$ (M- θ -i int(V)). Therefore, $f^{-1}(M - \theta - i - int(V)) \subseteq \theta - i - int(f^{-1}(V))$.

 $(vi) \rightarrow (viii)$. Let $B \subseteq Y$. Then by (vi) , $f^{-1}(M - \theta - i)$ $-int(B)) \subseteq \theta$ -i -int($f^{-1}(B)$). Hence by (iv), θ -i cl(f⁻¹ (B)) \ θ -i -int(f⁻¹-(B)) \subseteq f⁻¹ (M- θ -i -cl(B)) \ f^{-1} (M- θ -i -int(B)). So, by Proposition (3.1), θ -i - $\text{Fr}(f^{-1}(\mathbf{B})) \subseteq f^{-1}(\mathbf{M}\text{-}\theta\text{-}i\text{-}\text{Fr}(\mathbf{B}))$, for each $\mathbf{B} \subseteq \mathbf{Y}$.

(viii)→(vi). Let $B \subseteq Y$. Then by Proposition(3.1), θ -i $-\text{Fr}(f^{-1}(B)) = \theta - i - c l(f^{-1}(B)) \setminus \theta - i - \text{int}(f^{-1}(B)) \subseteq$ f^{-1} (M- θ -i -cl(B)) \ f^{-1} (M- θ -i -int(B)) this implies that $f^{-1}(M - \theta - i - int(B)) \subseteq \theta - i - int(f^{-1}(B))$, for each $B \subseteq Y$.

Definition 4.2: A function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is said to be strongly M- θ -icontinuous, if for each $x \in X$ and each i-open set V of Y containing $f(x)$, there exists $U \in M$ -i- open in X such that $f(M-i - cl(U)) \subseteq V$.

Proposition 4.1: If a function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is strongly faintly M- θ -i-continuous then f is strongly $M - \theta$ -i-continuous.

Remark 4.2: the converse of the above proposition is not true as shown by the following example.

Example 4.5: Let $X = Y = \{a, b, c\}$ with topologies

 $Tx = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$

 $\{\emptyset, \{\mathbf{b}, \mathbf{c}\}, \{\mathbf{a}, \mathbf{c}\}, \{\mathbf{c}\}, \{\mathbf{b}\}, \mathbf{X}\} = \mathcal{T}_{\mathbf{x}}^{\mathbf{c}}$

 $ST_x = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X \}$, $PT_x = \{ \emptyset,$ ${b}, {a, b}, {a, c}, X}$

i-open in $X = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \{a, c\}, X\}$ i-closed in $X = \{ \emptyset, \{b, c\} \{a, c\}, \{c\}, \{b\} \}$

θ-i- open in X={ ∅,{a, c},X} , θ-i- closed in X={ φ , {b}, X}

regular –i-open in $X = \{ \emptyset, \{b\}, \{c\}, \{a, c\}, X \}$

δ-i-open in X= { ∅, {b},{c}, {a, c},{b,c}, X}, δ-iclosed in $X = \{ \emptyset, \{a, c\}, \{a,b\}, \{a\}, \{b\}, X \}$

M-i- open in X= { \emptyset , {b}, {c}, {a, b} {a, c}, {b,c}, X}, M-i- closed in X= { Ø, {a},{b}, {a, b} {a, c}, {b,c}, X},

And let $\mathcal{T}_Y = \{ \emptyset, \{a, c\}, Y \}$,

 $\{\emptyset, \{\mathbf{b}\}, \mathbf{Y}\} = \mathcal{T}^c_{\mathcal{Y}}$

 $ST_Y = \{ \emptyset, \{a, c\}, Y\}, \mathcal{PT}_Y = \{ \emptyset, \{b\}, \{a,b\} \}$, $\{b, c\},$ Y[}]

i-open in Y = { \emptyset , {b}, {a, b} {a, c}, {b,c}, Y }, i-closed in Y = { \emptyset , {a, c} { c}, {b}, {a}, Y },

θ-i- open in Y={ ∅,{a, c},Y}, θ-i- closed in Y={ \varnothing , {b}, Y},

regular –i-open in $Y = \{ \emptyset, \{b\}, \{a, c\}, Y\}$

 δ -i-open in Y= { Ø, {b}, {a, c}, Y}, δ -i-closed in Y= { ∅, {b}, {a, c}, Y},

M-i- open in Y = { \emptyset , {b}, {a, b} {a, c}, Y}

M-i- closed in Y = { \emptyset , {a}, {b}, {c}, {a, b} {a, c}, ${b,c}$, ${Y}$

M- θ-i- open in Y={ \emptyset , {a,b}, {a, c}, Y}

define the function $f : (X, S\mathcal{T}_X, \mathcal{PT}_X) \to (Y, S\mathcal{T}_Y, \mathcal{PT}_Y)$ by the identity function. then f is strongly $M - \theta - i$ continuous but not strongly faintly M- θ-i-continuous.

Proposition 4.1: If $f : (X, S\mathcal{T}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is strongly faintly M- θ -i-continuous then:

(i) f is quasi θ -i-continuous

(ii) f is faintly i- continuous.

Proof.(i): Let $x \in X$ and $V \subseteq Y$ be M- θ -i-open containing $f(x)$. then there exist an θ -i-open set U such that $f(U) \subseteq V$ since every M- θ -i-open is θ -iopen set if $f^{-1}(V) \in \theta$ -i-open in X for every $V \in$ θ-i-open in Y .then f is quasi θ-i-continuous . (ii) similar (i)

Definition 4.3: A function $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is called weakly-M- θ -i -continuous if, for each x∈X and each i-open set V of Y

containing f(x), there exists M- θ -i –open in X such that $f(U) \subseteq i-cl(V)$.

Theorem 4.4: the following statements are hold for function

 $f : (X, \mathcal{ST}_X, \mathcal{PT}_X) \to (Y, \mathcal{ST}_y, \mathcal{PT}_y)$ and g: $(Y, \mathcal{ST}_y, \mathcal{PT}_y) \rightarrow (Z, \mathcal{ST}_z, \mathcal{PT}_z)$

(i) If, f is quasi θ -i-continuous and g is strongly faintly M- θ -i-continuous, then

g ο f is strongly faintly M- θ-i-continuous,

(ii) If, f is strongly faintly M- θ -i-continuous and g is weakly-M θ -i -continuous, then g o f is θ -i – continuous.

References

[1] A.A. Nase, T. Noiri, Strong forms of faint continuity, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 19, 21-28, (1998)

[2] A.A. Nase , Recent progress in the theory of faint continuity, Mathematical and Computer Modelling, 49, 536-541 , (2009),

[3] Firas N. AL-Zandi , A new type of bi-supra topological spaces , Thesis in, A.D , 2014

[4] M.H. Stone, Application of the theory of Boolean rings to general topology, Tams., 41 , $375 - 381$, (1937)

[5] P.E. Long, L.L. Herrington, The τθ-topology and faintly continuous functions, Kyungpook Math. J. 22, 7–14, (1982)

[6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68 ,44-46, (1961)

[7] O. Njåstad, On some classes of nearly open sets, Pacfic J. Math. 15, 961–970, (1965)

[8] A. S. Mashhour, M. E. Abd-El Monsef, and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47–53, (1982)

[9] M. E. Abd El-Monsef, El-Deeb S. N. and R. A. Mahmoud, β-Open sets and **β**-continuous mappings, Bul l. Fac. Sci. Assiut Univ., 12, 77–90 , (1983)

[10] A.A. El-Atik, A study on some types of mappings on topological spaces, M. Sc. Thesis Tanta Univ., Egypt (1997).

Proof. (i) Let $V \subseteq Z$ be M- θ -i-open set and g be strongly faintly M- θ -i-continuous,, then $g^{-1}(V) \in \theta$ i-open in Y. But f is quasi θ -i-continuous, then $(gof)^{-1}(V) \in \theta$ -i-open in Y .Hence, g o f is strongly faintly M- θ-i-continuous.

(ii) similar (i).

Theorem 4.5:. For two function f : $(X, \mathcal{ST}_X, \mathcal{PT}_X) \rightarrow$ $(Y, \, S\mathcal{T}_y, \, \mathcal{P}\mathcal{T}_y \,)$ and g: $(Y, \, S\mathcal{T}_y, \, \mathcal{P}\mathcal{T}_y \,)\rightarrow$ (Z, \mathcal{ST}_z , \mathcal{PT}_z) the following properties are hold:

(i) If, g is a surjective pre-M- θ -i -open and g o f is strongly faintly M- θ -i-continuous. then f is strongly faintly M- θ-i-continuous.

(ii) If, g is a surjective pre-M- θ -i -closed and g o f is strongly faintly M - θ -i-continuous. then f is strongly faintly M- θ-i-continuous.

Proof. (i) Let $V \subseteq Z$ be a M- θ-i -open set. Since, g o f is strongly faintly M- θ -i-continuous., then $(g \circ f)^{-1}$ (V) is θ -i –open in X. But, g is surjective pre-M- θ – i-open, then $g^{-1}(V)$ is M- θ -i -open set in Y. Therefore ,f is faintly M- θ -i-continuous (ii) Obvious

Definition 4.4: A function f :(X, ST_x , PT_x) \rightarrow $(Y, \mathcal{ST}_y, \mathcal{PT}_y)$ is called :

(i) M-θ-i-open if $f(V) \in \theta$ -i-open in Y for each $V \in$ M- θ-i-open in X,

(ii) M- θ -i-closed if f(V) $\in \theta$ -i-open in Y for each V \in M- θ-i-closed in X.

[11] A.I. EL-Maghrabi and M.A. AL-Juhani, M-open sets in topological spaces, Pioneer J. Math. Sciences, 4, no. 2, 213-230 , (201 1)

[12] B. Roy and T. Noiri, Unification on strongly θcontinuous functions, Analele Universit˘at¸ ii de Vest, Timi¸ soara, Seria Matematic˘a – Informatic˘a LI, 2, 115– 123, (2013)

[13] E. Ekici, On e-open sets, DP*-sets and DPE* sets and decompositions of continuity , Arabian J. Sci. Eng., 33, no. 2A, 269 – 282, (2008)

[14] A.I. EL-Maghrabi and M.A. AL-Juhani, Further properties on M-continuity, Proc. Math. Soc. Egypt, 22, 63- 69, (2014)

[15] A.I.EL-Maghrabi and M.A.AL-Juhani, New weak forms of faint continuity, IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 4, 6 ,285 – 295 , (2014)

[16] A.I. EL-Maghrabi and M.A. AL-Juhani, New types of functions by M-open sets, Taibah Univ. J. Sci., 7, 137-145 , (2013)

[17] M. Caldas, A strong form of strong θ – continuity, General Mathematics Vol. 20, No. 4 ,27– 42 , (2012).

[18] A.A. Nase, Strongly β-irresolute functions, J.Natur. Sci. Math., 36, 199-206, (1996).

[19] S. Fomin, Extensions of topological spaces, Ann. Math., 44, 471- 480 , (1943)

[20] S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Soc., 6, 689-696 , (1998).

حول الدوال القوية الضعيفة من النمط i- -M في الفضاء ثنائي التبولوجي الفوقي

1 طه حميد جاسم ، ريم عمران رشيد 2 1 قسم الرياضيات ، كلية علوم الحاسوب والرياضيات ، جامعة تكريت ، تكريت ، العراق 2 قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة تكريت ، تكريت ، العراق

الملخص

في هذا البحث قدمنا تعريفا جديدا أسمينا open-i ومن خالل هذا التعريف قدمنا صف من المفاهيم التبولوجيه) مجموعه مفتوحة من النمط **i- -M** , مجموعه مغلقة من النمط **i- -M** , الدوال القوية الضعيفة من النمط **-M** , الدوال القوية من النمط **-M**) وعممنا هذه المفاهيم في الفضاء ثنائي التبولوجي الفوقي وأجراء عدة مبرهنات مهمة في هذا الموضوع قد برهنت ودرسنا العالقات بين تلك الدوال وافترضنا أشكال أخرى.