Optimization of Interval Type-2 Fuzzy Logic System By using A New Hybrid Method of Whale Optimization algorithm and Extreme Learning Machine

  • Mohammed Qasim Ibrahim
  • Nazar K. Hussein

Abstract

The problem of searching for the best values ​​of the fuzzy logic parameters (T1FLS) is consider complex problems, and for type-2 fuzzy logic system (T2FLS) the problem is more complex, in special case interval type-2 fuzzy logic system (IT2FLS). The Researchers have used many methods and algorithms to solve this problem, and among the most important algorithms used in this field are the)Meta-heuristic) algorithms. Because Meta-heuristic algorithms have a high capacity in the practical field, so we used one of the modern algorithms in this field, which is the Whale Optimization algorithm (WOA). We are used the (WOA) algorithm together with the Extreme Learning Machine (ELM) algorithm as a hybrid algorithm to find the best parameters ​​for the IT2FLS. Whereas, the (WOA) algorithm was used to estimate the values of the antecedent for the system, and the (ELM) algorithm was used to find the values ​​of the consequent parts in the system. The simulation results show that the proposed algorithm is effective for a system (IT2FLS).


 


http://dx.doi.org/10.25130/tjps.26.2021.038                  


 

Published
May 16, 2021
How to Cite
IBRAHIM, Mohammed Qasim; HUSSEIN, Nazar K.. Optimization of Interval Type-2 Fuzzy Logic System By using A New Hybrid Method of Whale Optimization algorithm and Extreme Learning Machine. Tikrit Journal of Pure Science, [S.l.], v. 26, n. 2, p. 126-136, may 2021. ISSN 2415-1726. Available at: <http://tjps.tu.edu.iq/index.php/j/article/view/1138>. Date accessed: 08 dec. 2021. doi: http://dx.doi.org/10.25130/j.v26i2.1138.
Section
Articles