Evaluation urine IL-10 in pregnant women infected with UTI in different pregnancy trimesters at Samarra city

Ibtissam Saeed Abass¹, Hala A. Awadi¹, Azzawi M. Hadi²
¹ Department of Biology, College of Science, Tikrit University, Tikrit, Iraq
² College of Medicine, Tikrit University, Tikrit, Iraq

DOI: http://dx.doi.org/10.25130/tjps.25.2020.021

ABSTRACT

Urinary tract infection is a common disease, affecting a large number of women especially pregnant women, the present study aimed to compare among levels of IL-10 in urine during different pregnancy periods. 70 samples of urine were collected from infected women and 20 samples of urine were used as a control. For culture of bacteria specific culture media are used. The result's show that gram-negative bacteria especially Escherichia coli were the highest incidence of UTI infection among the other different microorganisms species. Urine levels of IL-10 were estimated by ELISA and the result showed significant differences in IL-10 mean levels among trimester pregnancy groups and control group (p <0.01). P-Value in the first trimester was 0.00002, in second trimester was 0.00003 and in the third trimester was 0.00001.

Materials and methods

The urine's samples are divided into two parts, first for bacterial culture and the second centrifugaed, the supernatant was frozen at -20C until use to measure the level of IL-10 in urine, then the sediment applied on a clean slide, and a cover slide was applied over the urine sediment. Slide directly examined under the high power field (H.P.F) of light microscope to find out any pus cells, bacteria cells, casts, crystals erythrocytes and epithelial cells [7]. The isolates has been re-purified by sub-culturing on MacConky agar, Eosin methylene blue agar (EMB), Pseudomonas agar and nutrient agar by streaking method and incubated for 24 hours at a temperature 37C. Depending on the morphological and cultural characteristics (such as color, size, shape and odor of the colony), as well as determine the bacterial ability to lactose fermenter [8]. Also Blood agar and nutrient agar are used to detect swarming phenomenon. Biochemical tests, including Indol test [9], Methyl red test [10], Vogas –proskauer test [10], citrate

Keywords: urinary tract, IL10, pregnancy women.

Introduction

The urinary tract infection (UTI) is one of the most common and frequent infections in pregnant women after respiratory tract infection and causes high mortality. The source of the infection of urinary tract infection and inflammation of the lower female genital tract is the normal flora present in the feces, as it colonize the vagina and urethra, begins with cystitis, then to the kidney and attributed the injury of these vital organs. While trying to avoid the host defenses the pathogen adheres to the special receptors present on the vaginal and urinary epithelial cells due to its ability to choose the appropriate place for its growth, reproduction and spread [1].

Cytokines are proteins that are excreted from immune cells and perform many functions of those cells, such as intercellular signals to regulate inflammatory responses, whether they are concurrent or systemic, therefore regulate the cellular or humoral immune response [2], produced in response to microbes, other antigens and various cytokines stimulate an adverse response to cells that include immunity and inflammation [3].

IL-10 is an important pleiotropic immunoregulatory cytokine mainly secreted by macrophages, but also by T helper 1 (Th1) and Th2 lymphocytes, dendritic cells, cytotoxic T cells, B lymphocytes, monocytes and mast cells [4]. It is described as a product of Th2 lymphocyte which inhibits cytokines produced by active phagocyte [5]. Plays an important role in the inflammation and immune response. Immune responses and its vital events include inhibition of the production of basic interlukens of inflammation such as interferon-8 of the macrophage, monocyte and Neutrophil [6].
utilization test [9], oxidase test [9], catalase production test [11], urase production test [9] and growth on Kligler Iron Agar (KIA) test [9].

Interleukine-10 Determination

IL-10 was quantitatively determined in urine of pregnant women with UTI, and UTI non-pregnant women as a control subjects. Pregnant women with UTI are grouped into three categories (first, second and third trimesters) according to the period of pregnancy. By mean of ELISA (Enzyme Linked Immunosorbert Assay) using ready kit for human IL-10 manufactured by Sunlog biotech company (china).

Results and Discussion

The current study classified the urinary tract infection in pregnant women according to bacterial spp. isolated in urine culture. Different bacteria spp. are reported in the study, among the reported species E. coli determined mostly in 38 (54.28%) patients, followed by Klebsiella spp. 16 (22.85%) patients, then Pseudomonas spp. 10 (14.28%) patients. The lowest reported species are Proteus spp. determined in 6 (8.57%) patients. The reported bacteria spp. illustrated in table (1).

Previous studies, similar result reported by Al-Nuaimi (2002) study in Baghdad city; E. coli was the mostly reported bacterial spp. in urine samples of pregnant women. Other studies [12,13-15], also determined similar results (47%, 68% and 56.3%) respectively. Prais et al. [16] reported bacterial growth in 82% of their study cases and Klebsiella spp. isolated in 22.85% cases. Hidron et al. [17] disagree with our results isolated bacteria 6% cases 14.28% of which were Pseudomonas spp., Leblebioglu et al. [18] (2003) result was in agreement with our study results isolating proutes spp. in 8.57% cases. The differences in these ratios are due to the number of samples collected during the study period or the development of resistance of some bacterial species. Also, may be due to the difference in studied geographic area.

Determination Interleukine -10

<table>
<thead>
<tr>
<th>Period</th>
<th>N</th>
<th>Bacteria</th>
<th>IL-10 Mean± S.E. pg/ml Urine</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>E.coli</td>
<td>29.47± 8.94 C</td>
<td>0.00002</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Klebsilla spp.</td>
<td>18.26± 3.76 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Pseudomonas spp.</td>
<td>42.04± 8.77 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Proteus spp.</td>
<td>18.75 ± 3.04 d</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>E.coli</td>
<td>27.99± 1.45 c</td>
<td>0.00003</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Klebsilla spp.</td>
<td>16.77± 2.143 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pseudomonas spp.</td>
<td>45.70 ± 3.5 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Proteus spp.</td>
<td>16.25± 4.31 d</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>E.coli</td>
<td>31.40 ± 6.60 c</td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Klebsilla spp.</td>
<td>21.45±10.18 d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Pseudomonas spp.</td>
<td>57.24± 9.8 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Proteus spp.</td>
<td>20.95± 3.89 d</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td></td>
<td>7.74± 0.542 c</td>
<td></td>
</tr>
</tbody>
</table>

-Values represent the standard ±error rate
- Different letters mean there is a moral difference

The result in this table 2 show the high levels of IL-10 in urine, which compared with control this result is consistent with the study conducted by Duell et al. [19] who found high levels of IL-10 explain the reason for this rise is due to a role for IL-10 in the innate response to human UTI. the increase in IL-10 concentration may be suggested to an inhibition mechanism - regulation of the release mechanism that inhibits the contacts [20]. This is consistent with Marchant and his group [21], who confirmed that the function of IL-10 is to inhibit the production of IL-6, IL-8, IL-1, cellular motor and the tumor necrosis factor of the type Alpha (TNF-α). Some infectious diseases such as urinary tract infections increase

Fig. 1: Difference in IL-10 levels in urine during the three periods of pregnancy
during pregnancy due to physiological changes and a successful pregnancy in a woman must be a woman in a state of immunosuppressive inhibition, whether to accept the fetus, which is prepared by the immune system; foreign body or to protect it and protect the fetus from infections that Occur during pregnancy this is the action of cellular motors of TH2 (IL-4, IL-10) and that IL-10 is the first of the Th2 interludes and was thought to be produced from only immune cells, it is certain that it is produced from many cells including the connective cells as it is the IL-10 which is an anti-inflammatory rise, this is consistent with our study [22]. Therefore, studies conducted on pregnant mice to determine the extent of the effect of IL-10 on them have been shown to be produced in pregnant women from placental cells and uterus since the beginning of pregnancy to protect the mother and fetus from the risk of miscarriage due to the attack of the fetus's immune system as a foreign body [23]. The effect of IL-10 deficiency on pregnant mice was observed, where it is at risk of miscarriage because it has an impact on the growth of placenta and it was illustrated through trials that the decrease of IL-10 in pregnant mice increases the risk of infections with different types of infections, especially pregnancy poisoning and acute kidney infection [23, 24-25]. As well as, IL-10 has a role in protecting against high blood pressure during pregnancy and proved that IL-10 rises in the case of high pro-inflammatory cell movements and this is in agreement with our current study [26]. These variations in the IL-10 concentration in different pregnancy periods may be explained by the physiological changes during pregnancy like hormonal changes that causes vasodilitation of the urinary tract due to high progesterone levels during pregnancy, mechanical obstruction of urethra at the pelvic end due to uterus hypertrophy. Also difference in kidney function during pregnancy trimesters may attribute to these variations among trimesters [27].

References

