Demodulation and purification of ellagic acid from pomegranate fruit and study antimicrobial activity against the pathogenic bacteria.

Hiba H. R.¹, Eesa. M. Thalij ², Sundus J. M. ³

¹ Department of Chemistry, Collage of Science, University of Tikrit, Tikrit, Iraq
² College of Pharmacy, University of Tikrit, Tikrit, Iraq
³ Department of Biology, Collage of Science, University of Tikrit, Tikrit, Iraq

DOI: http://dx.doi.org/10.25130/tjps.24.2019.108

ABSTRACT

The ellagic acid is isolated from pomegranate fruit by liquid–liquid extraction method. This method includes extraction with 20% (v/v) methanol under reflux conditions for purification of acid by preparative TLC method using glass plates (20 × 20 cm) coated with silica gel. This acid was detected by TLC, HPLC, UV methods and functional group of the acid which was extracted by FTIR technique. The antibacterial activity of Ellagic acid extract of pomegranate fruit powder was defined by petri Dish technique versus different microbial types, Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and two Yeasts (C. glabrata and C. albicams).

In the present paper we report the isolation of ellagic acid from the methanolic extract of pomegranates[12], as well as the identification of the compound using high-performance liquid chromatography (HPLC-UV-PDA), thin layer chromatography (TLC), Uv and FTIR spectra. We also evaluated the immunological activities of the isolated compound and compared with standard ellagic acid [13,14].

Experimental Instrumentation:

Knauer system HPLC with C-18 Phenomenex column (250 × 4.6mm, 5µ) with Uv detector and auto sampler (3455) was employed for chromatographic separation, glass plates (20 × 20 cm) coated with silica gel (60 F254), with 250 µm layer thickness, using Shimadzu UV-VIS Spectrophotometer 1800 with 3 ml capacity quartz cells and FTIR, Digital balance and pH Meter were used in the study.
Materials:
The HPLC grade methanol, hexane, hydrochloric acid hexane, ethanol, acetic acid, THF, acetonitrile, were purchased from local market.

Methods:
The dried powder of pomegranate fruit (200 gm) was extracted with 500 ml of 20% (v/v) methanol under reflux conditions for 1 h at 60°C. The solution was filtered. After 12-24 h by using a Whatmann filter paper No 42, the filtrate was evaporated to a 10 ml and extracted with hexane to remove the lipid, a methanol was added to the extract and this solution was used for purification ellagic acid by TLC technique.

Purification and isolation of ellagic acid by preparative TLC
The dried plates were placed in the oven at 100°C of 30 minutes to activate it and cooled at room temperature. Each extract was antroducat at 1 cm above the edge of the chromatographic plate with 4 mm width using 100 µl sample syringe (Hamilton, Switzerland) Chromatographic chamber which was already saturated with a solvent system, other solvents system such as hexane: ethanol : acetic acid, THF: acetonitrile were also used but 25ml of ethanol : water (80:20) as a mobile phase gave better separation with migration distance 12cm of the compound, the chromatograms were air-dried and visualized under UV light at 254 nm and the fluorescence or the color were noted. The spot of Ellagic acid was scraped separately and dissolved with 20 mL methanol and shaken for 10 min. The obtained extract was filtered and the residue was shaken twice with 20 mL methanol for 10 min, the resulting was identified by comparing with standard.

<table>
<thead>
<tr>
<th>Mobile phase</th>
<th>RF Crude extract</th>
<th>RF Ellagic acid standard</th>
<th>RF Tannic acid standard</th>
<th>RF Nicotinic acid standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol: water (80:20)v/v</td>
<td>0.29, 0.38, 0.78</td>
<td>0.39</td>
<td>0.29</td>
<td>0.23</td>
</tr>
<tr>
<td>Hexan:ethanol : acetic acid (70:20:10)</td>
<td>0.13, 0.17, 0.38</td>
<td>0.29</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>THF:acetonitrile(15:85)</td>
<td>0.15, 0.23, 0.39</td>
<td>0.78</td>
<td>0.38</td>
<td>0.39</td>
</tr>
</tbody>
</table>

The ellagic acid sample was separated and identified by HPLC analysis using the mobile phase consisted of 0.1% orthophosphoric acid at a flow rate of 0.5 mL min⁻¹. The UV detection wavelength was set at 272 nm. The extract of ellagic acid was determined by injection 20 µl of the extract after separation by TLC and it was compared with standard (injection 20 µl under same condition) the Rt value of the ellagic acid extract and standard were shown in table (2).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellagic acid extract</td>
<td>6.58</td>
</tr>
<tr>
<td>Ellagic acid standard</td>
<td>6.59</td>
</tr>
</tbody>
</table>

Table (1) The RF values of one-dimensional TLC for crude Extract for ellagic acid, tannic acid and nicotinic acid standards in different mobile phase.

![Fig-1.TLC chromatogram of standard ellagic acid and extract only by (ethanol:water,80:20) mobile phase](image)

Determination of ellagic acid by HPLC:
UV visible and FT-IR Spectroscopic analysis:
The sample was analyzed using FT-IR and UV spectrophotometer after centrifugation at 3000 rpm for 10 minutes and filtered through Whatmann No. 41 filter paper using high pressure vacuum pump. The extracts were examined in the UV-VIS wavelength ranging from 200-700 nm after dissolving in analytically pure methanol and the characteristic peaks were detected. FTIR Spectrum recognized the functional group of the chemical compounds depends on the wave number in the infrared technique area (400-4000) cm⁻¹, and the peak values were recorded.

Results and discussion
The analysis process leads to the results by using 80% methanol/water, ethanol was distilled out and the aqueous layer was sequentially extracted with hexane, the residue dissolved by methanol. It is important to use a 60°C temperature and avoid light during the extraction process with constant shake up, samples should be filtered to eliminate contaminants such as fibers, pigments, and other compounds after 12 or 24 h of extraction process.

TLC: Ellagic acid from plant samples was confirmed by TLC, HPLC chromatogram, IR spectra and UV. When the developed TLC plate was sprayed with 50% sulphuric acid they showed dark coloured spots of the reference and ellagic acid. RI value of ellagic acid isolated from the samples and standard was equal to (0.39).

HPLC: The identification of the constituents which is presented in the chromatographic profile of extract was carried out by comparison with retention times (Rt) of peaks in the standard solution ellagic acid.

FTIR-spectrophotometry:
The main absorption bands were to the valence vibrations corresponding to OH, C=O, C-O-C groups, C-H bonds and to aromatic rings vibrations. The IR spectrum showed stretching vibration in regions 1612 cm⁻¹ for C=C stretch, aromatic ring), OH stretching bond 1724 cm⁻¹ for (C=O, oxidic carbonyl group) and 3400 cm⁻¹ For (H bonded hydroxyl group) The bands observed in the rang 1669-1500 cm⁻¹ are aromatic ring (Fig-3) The results of the FTIR confirmed the existence of ellagic acid.
UV- spectrophotometry:
The UV-VIS spectra for the extract in methanol was recorded for the range 200-800 nm. The ellagic acid was determined at 273 nm and compared with the standard ellagic acid, Fig(4, 5).

The standard solution was scanned in the range 200-800 nm. Wave lengths of maximum absorbance was found to be at 273 nm, for determination of extract sample, an aliquot volume of sample were prepared as in the standard sample and measured at 273 nm.

Biological activity study:
Presence of some polyphenols compounds such as ellagic acid the basis of antibacterial activity of some plant extracts, which are enriching their biological activity against pathogenic bacteria, three microorganisms representing different microbial classes, Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and two Yeast (C. glabrata, C. albicans). The Petri dishes were incubated at 37 ± 1°C for 24 hrs; the diameters of zone of inhibition (mm) surrounding each of the wells were verified. The inhibitory effect of pomegranate fruits extracts may be referred to the effect of phenolic compound. As in ellagic acid which may make complexation with enzyme or substrate in bacteria cell. Ellagic acid toxicity due to its effect on the microorganism membranes. The ability of ellagic acid to form compounds with the main metals in bacteria cell account was used to detect the toxicity[15].
Table-3, concentration of ellagic acid effected on the bacteria and yeast

<table>
<thead>
<tr>
<th>Type of bacteria</th>
<th>concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 mg/ml</td>
</tr>
<tr>
<td>E.coli</td>
<td>11.5 mg</td>
</tr>
<tr>
<td>Staph.aurens</td>
<td>13 mg</td>
</tr>
<tr>
<td>Ps.acrogenosha</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of yeast</th>
<th>concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 mg/ml</td>
</tr>
<tr>
<td>C.albicans</td>
<td>13 mg</td>
</tr>
<tr>
<td>C.glabrata</td>
<td>11 mg</td>
</tr>
</tbody>
</table>

Conclusion

The research included the extraction and purification of the ellagic acid from the pomegranate fruit, where results were obtained means of the measurements by UV radiation shown λmax at 273nm and the technique of infrared radiation, where the packages provided clear to the acid extracted in addition to TLC and HPLC techniques, which have good results.

References

استخلاص وتقطية حمض الأيلاجيك من فاكهة الرمان ودراسة الفعالية البايولوجية
 ضد البكتيريا المرضية

هبة حمزة رشيد 1، عيسى محمد الثمج 1، سندس جاسم محمد 3

قسم الكيمياء، كلية العلوم، جامعة تكريت، تكريت، العراق

كلية الصيدلة، جامعة تكريت، تكريت، العراق

قسم علوم الحياة، كلية العلوم، جامعة تكريت، تكريت، العراق

المتخص

طريقة بسيطة للاستخلاص باستخدام الاستخلاص (السائل-السائل) لتحضير مستخلص الرمان الغني بحمض الأيلاجيك. تضمنت الطريقة الاستخلاص مع المهاندا ماء بنسبة (22% ح/ح) تحت ظروف التصعيد الحراري تحت ظروف التصعيد الحراري ومن أجل تحقق الحمض بواسطة TLC. تم تحديد المركب بواسطة صفائح زجاجية (22 × 22 سم) مغمفة بجيل الميسيلكا، تم تشخيص المجموع الوظيفي للمحمض بواسطة HPLC، TLC، UV. تم تشخيص المجموع الوظيفي للمحمض بواسطة TLC. تم تحديد الفعالية المضادة للبكتيريا لمستخلص حصص الأيلاجيك من المسحوق المجفف من فاكهة الرمان بواسطة تقنية الطبق البتري (petri dish) ضد اصناف ميكروبية مختلطة، إيجابية الجرام (Staphylococcus aureus) (Escherichia coli، Pseudomonas aeruginosa)، سالبة الغرام (Pseudomonas aeruginosa) ونوعين من الخمائر (C. glabrata و C. albicans).